第一篇:心得(量子计算)
计算机科学导论心得体会三(量子计算)
“量子计算”是一个对大部分人来说都比较陌生的名词,对我也是如此。这节课的教授向我们简单介绍了量子计算相关的知识,让我对这个概念有了初步的了解。
以量子力学原理进行计算的计算机就是量子计算机,而量子信息与量子计算是信息论和计算机科学与量子物理交叉的学科。量子计算有许多优势,比如运算速度快,在物理上容易实现等等。由此可看出量子计算的广阔前景。
摩尔定律指出,集成电路上可容纳的晶体管数量,约每隔十八个月便会增加一倍,性能也将提升一倍。但是随着时间的推移,以基础物理为原理设计出的计算机性能提升已接近极限,摩尔定律也面临着失效的危险。在后摩尔时代,人们需要用新型技术来实现计算速度的提升,而基于量子物理的量子计算机就是很好的选择。
量子计算的应用前景广阔。其中最引人注目的就是窃取密码。目前的密码破解的困难主要是由于大数分解的困难,而量子计算能将大数分解问题在多项式时间内解决,因此能轻松破解密码。反过来,量子计算机还可以基于Heisenberg测不准原理与量子非克隆原理来发现监听,确保安全通信,这一成果已得到商业应用。此外,它还能够提高数据搜索的效率,在大数据时代的今天十分重要。因此,发展量子计算机在国际社会上普遍得到重视。我国在量子通信方面成果显著,而在量子算法方面比较薄弱。
量子物理是一门很深奥的学科,在短短的两节课内无法进行详细的介绍,我也没有听懂。但是这门物理学的应用将挑战传统的计算机,打开计算机世界的新大门。量子计算机的未来值得我们期待。
第二篇:量子计算学习心得
量子计算学习心得
基于AlanTuring理论发展起来的现代计算机科学在近几十年中取得惊人的发展,计算机硬件能力在20世纪60年代后的几十年时间里以近似Moore定律成长。随着电路集成度的提高,进一步提高芯片集成度已极为困难。当集成电路的线宽在0.1μm以下时,电子的波动性质便明显地显现出来。这种波动性就是量子效应。为此,多数观察家预期Moore定律将在21世纪前二十年内结束,人们在考虑替代当前计算机的新途径。物理学方面,自MaxPlanck在1900年提出量子假说以来,量子力学给人类生活带来翻天覆地的变化,改变了经典物理学对世界的认知方式。Moore定律最终失效问题的一个可能解决办法是采用不同的计算模式,量子计算理论就是这类模式的一种。但是直到1982年,才由Benioff和Feynman发现了将量子力学系统用于推理计算的可能;1985年Deutsch提出第一个量子计算模型。由此,量子计算迅速吸引了全世界研究者的注意并成为一门具有巨大潜力的新学科。
量子计算是应用量子力学原理来进行有效计算的新颖计算模式,它利用量子叠加性、纠缠性和量子的相干性实现量子的并行计算。量子计算从本质上改变了传统的计算理念。
量子计算发挥作用的前提是量子计算的物理实现,即量子计算机的构建。虽然量子计算机的实现原则上已没有不可逾越的障碍,但技术上的实现却遇到严重的困难。无论是量子并
行计算还是量子模拟计算,本质上都是利用了量子相干性,但在实际系统中量子相干性很难保持。此外,量子的纠缠状态也很容易崩溃,且粒子数目越多,实现纠缠状态就越困难。要制造出实用的量子计算机,就必须使更多的粒子实现纠缠状态。
在量子算法方面,自Shor因子分解和Grover搜索算法提出后,虽然各国众多的研究者在该领域进行了大量的研究,但迄今为止,还没有发现其他解决经典问题的新量子算法。一方面是因为无论经典算法还是量子算法,算法设计本身就不容易,更何况要设计出超过最好的现有经典算法的量子算法就更显不易;另一方面,量子计算机上能提供相对经典计算机进行加速的问题可能本来就不多,而已经发现了其中的大部分重要算法;此外,量子计算机与人们的直觉相差太远,在过去几十年中发现传统经典算法的经验对于如何发现和寻找量子算法毫无帮助, 即使存在对很多问题有效的量子算法,也很难找出。
在目前量子计算机还未进入实际应用的情况下,量子计算的研究重点包括:a)计算的物理实现。提高量子体系中相干操控的能力,实现更多的量子纠缠状态。b)研究新的量子算法。目前还有很多经典算法无法解决的难题,研究新的能解决这些难题的量子算法是一个重要方向。c)增强现有量子算法的实用性和扩展现有量子算法的应用范围,如将量子Fourier变换的应用推广到解决隐含子群问题以及更广的范围,将Grover算法体系扩展到二维和多维搜索域等。
量子计算正在新型计算中发挥更大的作用。
第三篇:科普 量子纠缠
科普 量子纠缠
量子论被公认为是科学史上最成功的、被实验结果符合最好的理论,但另一方面,它却和人类日常生活的经验如此格格不入。
如今,很多实验物理学家还在验证这一理论在80年前所做的基本假设。物理学家们依然还在为这个理论头疼不已。著名物理学家费曼就曾说:“我敢肯定,现在没有一个人能够懂得量子力学。”尽管已经走过百年历史,它还有无数的谜尚待解开。
微观与宏观,水火不兼容
物理学家常常会说“传统物理学认为如何如何,量子物理学则认为如何如何”或者“客观现实中如何如何,但量子世界里却如何如何”这样的“鬼话”。量子物理学家告诉我们,物质在被测量之前是不确定的。“不确定性”是量子世界的基本法则。“观测”是在不确定的量子世界和确定的现实之间转化的关键。那么,神秘的量子世界和日常的现实世界到底能否兼容呢?在经典极限情况下,通过合理的近似,量子理论可以自动过渡到经典世界的物理理论。但如何描述这两个世界的交界面,成了量子论过不去的一个坎。直到现在,理论物理学家仍然未能将两者恰当地联系起来。
“哥本哈根学派”认为,物质在被观测之前,是处于一种不确定的叠加态的。为了反驳这种观点,证实量子力学在宏观层面是不完整的,德国物理学家薛定谔设计出物理学史上最著名的动物:薛定谔的猫。
这是一个思想实验:不透明的箱子里装着一只猫,箱子中另外还有一个原子衰变装置,原子会随机发生衰变,一旦衰变发生,就会激发一系列连锁反应,最终打破箱子里的毒气罐而毒死猫,反之猫则活。在打开箱子观测那一瞬间之前,原子的衰变和猫的死活都处于一种叠加态,只有当打开箱子的一刹那,猫的死活才确定下来。所以,在打开箱子之前,猫既是死的,又是活的。问题是,现实中的猫怎么可能是“既死又活”的呢?我们的常识中,猫要么是死的,要么是活的。量子论无法解释现实世界,这成了量子论无数个困惑之谜中最神秘的一点。
“薛定谔的猫”出现之后,物理和哲学界就客观世界和人的意识的决定因素产生了一场大讨论:如果人的观测能决定猫的生死,那是否人的意识也会决定客观世界的走向呢?2
同一个世界,很多个宇宙?
“虽然我支持在无数个宇宙中存在着无数个Sheldon的‘平行宇宙理论’,我还是像你保证,没有任何一个宇宙中的我会和你跳舞。”《生活大爆炸》中,“宅男”Sheldon这么回复美女Penny的邀舞请求。
为了解决与现实世界兼容的问题,无数物理学家尝试了各种理论,最著名的恐怕就是上世纪50年代兴起的“平行宇宙”(多世界理论)。
支持这个理论的科学家认为,“薛定谔的猫”实验中,箱子在被打开观测之前,与其说猫处于一种既死又活的状态,不如说这只猫同时处于不同的“宇宙”中。有的“宇宙”中猫是活的,有的“宇宙”中猫是死的。听起来是不是很奇怪?但这个理论的确成功避开了很多问题,将微观和宏观世界联系在了一起。
然而,即使到现在,这个理论依然如此前卫,令人无法理解。最近20年间,它才开始受到人们的关注,并成为量子力学的热门理论。霍金甚至将这一理论用到解释时空旅行中:因为平行宇宙的存在,时间线产生了分叉,出现了多重“历史”,人们因此可能可以进行时空旅行。这一解释也解决了此前人们在时空旅行中关于“杀死过去的我”的悖论。
现在,“多世界理论”演化出的“时空穿梭”已经成为很多科幻作品中的主题。但这个理论完全是严格遵循数学方程演化得来的结果,其前提认为所有“宇宙”都包容在同一个“时空”中,而这个“时空”是多维度的,霍金所提出的进行“时空旅行”的“虫洞”目前只存在于理论层面,还没有任何物理证据证明其真实存在。
量子纠缠,挑战光速
“量子纠缠”现象是说,一个粒子衰变成两个粒子,朝相反的两个方向飞去,同时会发生向左或向右的自旋。如果其中一个粒子发生“左旋”,则另一个必定发生“右旋”。两者保持总体守恒。也就是说,两个处于“纠缠态”的粒子,无论相隔多远,同时测量时都会“感知”对方的状态。那么,这两个粒子如何实现瞬间的沟通,这种感知是否是超光速的,这是否违背了相对论呢?
在量子力学中,微观物质很可能的确展现出和日常生活中的常识相悖的情况。“在物理世界中,某些定义的速度是可以超越真空光速的,但是到目前为止,还没有一个可以让人信服的实验结果支持‘物理信号可以超越真空光速’这一论断。”中科院量子信息重点实验室副主任周正威强调。
在现实世界中,不可能在人和石头之间建立某种感应,不经接触就令石头发生改变。但瞬间感应可能发生在量子世界中。爱因斯坦不满地将“量子纠缠”称为“遥远的鬼魅行为”。20世纪下半叶至今的各类实验中,不断有人证实各种超光速现象的出现。1982年,巴黎大学的物理学家证实,亚原子粒子在向相反方向发射后,在运动时依然可以彼此互通信息。2008年,日内瓦大学的物理学家再次进行类似实验。这次,两个相互感应的粒子距离超过17千米。奥地利科学家蔡林格(Anton Zeilinger)甚至在两个相距144千米的岛屿之间观测到光子的量子纠缠现象。
尽管如此,依然没人能让物理信号超越光速。
量子论不是
“绝对真理”
量子论是20世纪出现的最成功的理论,它和相对论成为现代物理学的两大基石,但这两个基石之间却互不包容,又都不完整。相对论很好地解释了时空扭曲等问题,改变了人类的时空观;量子论的各种假设虽然不断被实验所证实,它或许也能帮助人类理解宇宙为何凭空而生,但却始终没法解释量子世界和宏观世界的交界面上所发生的一切。
为了将量子论和相对论结合起来,理论界出现了如“量子引力”、“超弦”等更加复杂难懂的理论。可以肯定,如果将来出现一个能替代量子论的理论,它必定能首先解释,为什么现有的各种实验能够如此符合量子理论。
费曼曾说,“我们要记住,或许有一天量子理论会被证明是失败的,因为它和我们日常的生活经验、哲学是如此地不同。”
而理论物理学家曾谨言也在《物理》杂志所发表的《量子物理学百年回顾》一文中表达了他的看法:“迄今所有实验都肯定了量子力学的正确性,但这只表明:它在人类迄今实践所及的领域是正确的。量子力学并非绝对真理。量子力学并没有,也不可能关闭人们进一步认识自然界的道路。量子力学与广义相对论之间的矛盾并未解决。”
第四篇:量子物理新进展
物理与电子工程学院举办“量子物理新进展”主题学术报告
10月27日上午10:00,物理与电子工程学院在物理北楼三楼报告厅举办以“量子物理新进展”为主题的学术报告。山西大学理论物理研究所所长,博士生导师,国家有突出贡献中青年专家梁九卿教授受邀作了以“量子物理新进展”主题的精彩学术报告,本次报告会由物理与电子工程学院副院长常方高教授主持,物理与电子工程学院的教师,11级全体学生以及研究生们出席了本次报告会。
在常方高教授所作的言简意赅的介绍后,梁九卿教授开始了他那精彩而又生动的报告。梁九卿教授紧紧围绕主题,分别从宏观量子系统,自旋相干态和自旋波色子等三个方面娓娓道来。在本次学术报告中,梁教授很好地将讲述内容与PPT相结合,而且全英文的PPT内容更加体现了老教授治学严谨的精神和很强的专业基础。听了梁教授的报告,我院师生主动与梁教授进行互动问答,将本次学术报告的气氛推向高潮。梁教授的那种对讲台的挚爱和对观众们的尊重的精神让在场的师生们为之动容。在整整一个半小时里,年过七旬的梁教授始终站在讲台上,用铿锵有力的声音为这此报告会画上了圆满的句号。
梁教授的这次学术报告进一步加深了观众们对量子物理的了解与印象,增进了我院在专业领域与兄弟院校的密切交流和联系。本次学术报告受到广大师生的一致好评,他们纷纷表示希望以后能够有更多的这样的学术报告。
(物理与电子工程学院 都韵)
第五篇:云计算会议纪要及心得
企业云计算信息化管理会议纪要
会议主题:企业云计算信息化管理讲座 会议时间:2013年6月18日
下午15:45 会议地点:新疆大学 会议内容: 孙慧(博士):1、2、3、首先对新疆创新管理研究中心科研平台作了简介。介绍研究方向:战略管理、资源与环境管理、能源管理 介绍新疆创新管理研究中心科研平台的成果。
马新智(主任):1、2、3、介绍北京神州云动科技有限公司的简介。分析企业进入大数据时代云计算所起的作用。介绍新疆创新管理研究中心科研平台的发展后盾。
孙满弟(董事长):
1、首先介绍各行业目前面临的挑战:
① 销售信息不透明。② 流程内耗低效率。③ 项目执行混乱。
2、云计算能够实现的功能:市场管理、客户管理、销售管理、客户服务管理、项目管理、进销存、办公自动化、商务管理3、4、举例说明已使用实施CloudCC系统的代表企业的成功案例。IT行业的发展轨迹:主机时代→安装时代→云计算时代
5、云计算应用的特性:多租户、透明升级、按需付费
心得体会
刚开始对云计算的概念模糊、抽象、难懂。在听了讲座以后对云计算系统有了一个笼统的概念,围绕云计算PaaS平台的CloudCC为企业提供高端专业管理的多方面软件云服务。
使用CloudCC系统所提供的管理系统后能够解决企业的很多制约发展的问题,例如:低管理水平、少资金投入、缺乏专业信息化人才等问题。是帮助企业实现管理的自动化。
云计算通俗讲就是将企业所需管理的信息进行归纳、收集,将这些信息传入“云端”,实现信息的保存或备份,再通过CloudCC系统可以实现市场管理、销售管理、项目管理、办公自动化、进销存等企业信息化管理。它摒弃了目前大多数企业投入软硬件、维护人员和人为管理的一些弊端,实现按需收费、一次投入,自动升级等低消耗管理模式。提高了企业的信息化体制和自动化管理,提升了企业整体的效率。
联系到实际,我感觉就像我们监理公司要求每天写监理日志、周报、月报、阶段性总结等资料归纳总结集中,进行对这些信息分析后作出对项目的管控和人员的管理。而云计算是对这些信息做了系统化收集和管理,可以自动简明的呈现出所需信息。提高了企业或项目的整体效率。