第一篇:制氢化工工艺培训工作总结
第二十三届制氢年会交流总结
本次制氢年会共收到与制氢有关的工艺、催化剂、设备、原料净化、烃类转化制氢、煤气化制氢、甲醇制氢、氢产品提纯、操作技术及安全、事故处理等方面的论文近五十篇。另外联络站还组织专业人员翻译了去年美国炼油工程师协会会议的制氢方面的七篇工艺、设计方面的综合性论文。现将年会交流心得总结如下:
一、炼油厂氢气网络设计优化技术
日益严格的环保法规要求炼油厂在生产硫含量更低、规格更高的车用燃料的同时,还要实现清洁生产,降低二氧化硫和温室气体的排放;并且,炼油厂为了更有效的利用原油资源,获得更好的经济效益,并在激烈的竞争中求得生存,炼油厂在重油加工工艺选择上,从传统的选择脱碳工艺转向更多的选择加氢工艺,同时选择加工的原油也更加重质、劣质化,硫、氮含量也更高,这些都驱使炼油厂不断增加加氢装置的能力,从而导致氢气用量的大幅增加。由于能源价格的不断提高,制氢的成本也不断上升,不论采用何种工艺技术的制氢装置,都要耗用大量的资源,并排放大量的温室气体;因此,优化氢气网络,合理利用氢气资源,对炼油厂的节能降耗,降低成本具有十分重要的意义。
通过氢气网络优化,达到最少使用新氢和最低排放废氢到燃料气管网的目的。
炼厂氢网络优化技术主要分为两类:一是基于图形分析方式的夹点分析方法;二是基于数学模型的线性或非线性规划算法。夹点分析方法可迅速诊断氢系统关键位置,确定系统最小用氢目标;而各种数学算法则可帮助用户设计实际可行的流程方案。两类方法都有各自的优势和局限性。因此,在实际氢网络设计和改造项目中将两方面技术相结合是非常必要的。
以m企业为例,原油综合加工能力为1350万吨/年,乙烯生产能力为100万吨/年。通过对该企业的氢气网络进行优化,可使m企业节省氢气使用成本6620万元,经济效益显著,应在国内炼油厂的规划、改造设计中推广应用。
在氢网络设计中应分析制氢装置、氢气净化装置的规模、原料、工艺操作对氢气产率、氢纯度以及消耗、氢气成本、装置投资的影响。
氢网络优化技术是一项炼油厂氢气网络优化的先进技术,其中基于图形法的氢夹点分析技术可有效识别炼油厂氢气网络中的瓶颈,科学指导氢气系统的优化方向,而基于数学模型的数学规划算法可优化氢网络的流程布局和操作条件,实现氢气的最佳利用方案。
在应用氢网络优化技术时,应充分考虑现场的实际约束条件,将理论与实际有机结合,避免教条主义,同时从全系统的角度分析各个局部问题,这样才能真正实现炼厂氢气系统的高效而经济的利用。
二、天然气和煤为原料制氢方案的技术经济比较
根据某炼油项目总体平衡,需要补充18万吨/年(约240000nm3/h)的氢气作为加氢装置的原料,以天然气为原料采用水蒸汽转化工艺生产氢气和以煤为原料采用部分氧化工艺生产合成气进而生产氢气是两个可供选择的供氢方案。通过实例对2种制氢方案进行技术经济评价:
以天然气为原料,采用水蒸汽转化工艺,称作方案一,天然气方案
以煤为原料,采用ge水煤浆气化工艺,称作方案二,煤制氢方案
对比后发现: 采用以煤方案生产氢气,工艺流程长、操作费用高、一次性投资高,占地较大,长周期操作可靠性相对较低,三废排放量大,但原料煤便宜; 天然气水蒸汽转化工艺生产氢气,工艺流程短、操作费用低、一次性投资低,占地较少,长周期操作可靠性高,三废排放量少,但天然气价格较高。因此,这两种工艺的选择主要考虑:
1、制氢装置的规模。当制氢装置的规模较小时,对部分氧化制氢路线,原料价格的低廉不足以补偿一次性投资和操作费用高带来的成本增加,故应采用水蒸汽转化制氢方案。
2、天然气和煤的价格。当天然气的价格远高于煤的价格时,以气化工艺为核心的制氢装置具有优势。天然气的价格目前的上升趋势也高于人们的预测,高于煤价的上涨速度,故越来越多的用户希望采用气化工艺以煤为原料生产氢气来降低氢气的成本。
3、环保因素。除了因气化效率的因素,煤制氢方案的二氧化碳排放比天然气制氢方案多外,其生成的大量煤渣等固体废渣的处理等,都是需要在选择时需要考虑的重要因素。
三、转化炉管的软密封技术
烃类水蒸汽转化装置中的转化炉,其转化炉管通常采用上膨胀技术:转化炉管穿过炉顶伸出炉外,受热后向上膨胀,膨胀量由上猪尾管吸收。转化炉管受热膨胀,伸出炉顶的转化炉管长度热态比冷态时大约增长0~230mm左右。伸出炉顶的转化炉管管壁温度很高,需要隔热保温,同时,为防止冷空气从炉顶侵入,炉顶的转化炉管开孔四周必须密封。但硬密封无法满足炉管热胀冷缩的动态密封保温要求,采用软密封技术可以解决问题。
对于伸出炉顶转化炉管的隔热保温,长期以来一直没有受到足够的重视,也没有统一的做法,各厂均根据自己的经验自行解决。经常出现的问题是:散热量大、炉顶温度高、炉顶漏风、保温层卡阻炉管热胀冷缩等。lpec的王德瑞、张月平发明了一种软密封保温套,保温套伸缩量很大,收缩与伸展长度之比可以达到1:2以上,可以随炉管热胀冷缩有规律的自由伸缩,满足炉管热胀冷缩的动态保温要求。
该软密封套采用非金属波纹膨胀节吸收炉管的热胀冷缩位移量,保温套可以随炉管水平侧向移动,也可以随炉管的热胀冷缩轴向有规律的伸缩。炉管冷态时,柔性波纹膨胀节很规整的折叠在一起,炉管由冷态到热态变化时,炉管热胀上移,拉动柔性波纹膨胀节的多个v形波逐波展开,随炉管自由伸展;炉管热态时,柔性波纹膨胀节保持很规整的伸展形态;炉管由热态到冷态变化时,炉管冷缩下移压迫柔性波纹膨胀节的多个v形波逐波收缩折叠,随炉管自由回缩,当炉管再由冷态到热态变化时,柔性波纹膨胀节又随炉管自由伸展,不需要人工干涉,如此循环往复。这样,无论冷态或热态炉管各部分均有保温套覆盖保温隔热。lpec软密封套已在国内某转化炉中实际采用,运行效果表明:密封、保温良好,可以推广采用。
四、变换气空冷入口管线腐蚀问题 由于该处腐蚀基本是碳酸腐蚀,选材大多为304l,这种材质应该是足够的,但在实际情况中发生较多的腐蚀减薄甚至穿孔的现象,这多半都是氯离子腐蚀造成,应分析除盐水中氯离子的含量,严格控制氯离子含量才是解决该问题的有效方法。某些炼厂将材质更换成316l,这种材质抗氯离子腐蚀的效果反而更差,不能根本解决问题。篇二:加制氢试生产小结
置年石化加制氢装置试生产小结
置年石化(扬州)有限公司催化干气制氢装置、油品加氢改质装置、芳烃选择性加氢精制装置于2009年9月开工筹建,到2011年4月底竣工,后于2011年5月初正式投入试生产。
一、试生产准备工作 1.联动试车领导机构 1.1.试车领导小组
组 长:江礼春
副组长:肖永平、朱和清
组 员:郑永安、李君、王宣、孙建兵、梅久成、黄元明、吴金冬、李炜、韦传洋、王旭东、陈曦、赵松、沈俊峰、王宇飞、宋厚钦、雷双潮、董立忠、陈文斌、张根双、赵月球、郑永庭 1.2.试车工作小组 组 长:朱和清
副组长:王宣、黄元明、吴金冬、梅久成、陈曦
组 员:柏伟、马晓、王旭东、龚彦波、周进业、许文兵、王文鹏、董立忠、高远、熊国炎、李光武、袁政飞、罗仁宏、郭平、梁喜平、朱宝银、侯建峰、沈俊峰、张奇营、王宇飞、宋厚钦、雷双潮、钟龙光 1.3.hse组
组 长:陈 曦
副组长:罗仁洪、詹建华
成 员:吴金冬、侯建峰、柏伟、郭平、梁喜平、朱宝银、蒋卫东、王旭东、龚彦波、周进业、王文鹏、董立忠、高远、熊国炎、李光武、张奇营、宋厚钦、夏宏图、雷双潮及各班组安全负责人等。1.4.综合技术组
组 长:黄元明
副组长:侯建峰、马晓
成 员:陈曦、梅久成、龚彦波、周进业、王文鹏、董立忠、高远、熊国炎、李光武等
1.5.试车生产调度组
组 长:吴金冬
副组长:柏伟、马晓、郭平、赵松
成 员:徐峰、阚磊、刘刚、陈学法、何伟、朱宝银、梁喜平、蒋卫东、郑晓平等。1.6.试车行政宣传和后勤保卫组
组 长:沈俊峰
副组长:张奇营
成 员:张桂蓉、陈训德等 1.7.试车保镖组
组 长:王旭东
副组长:龚彦波、周进业
成 员:董立忠、张益成、王文鹏、熊国炎、李光武、袁政飞、李立沙、高俊峰、汤建国、田晓平
1.8.物资供应、产品销运组
组 长:王宇飞
副组长:宋厚钦、夏宏图、钟龙光
成 员:王海英、段美华、杜心玲、唐漾等 1.9.人员培训
工艺技术骨干、生产班长和主要岗位操作人员都必须经过下列四个阶段的培训,以达到熟悉全流程、建立系统概念,掌握上、下岗位之间和前、后工序之间及装置内、外之间的相互影响关系。
1.9.1.第一阶段的培训:基础知识培训 2010年7月1日-----2010年9月10日,为期两个月,培训内容是学习化工基础知识;机械、电气、仪表、分析知识;工艺原理和生产流程及操作。1.9.2.第二阶段的培训:外出实习培训 2010年9月15日-----2010年11月15日,为期两个月,在山东东明石化培训,内容是学习生产控制和操作;机械、仪表的维护和使用;开停车、事故处 理等实际工作。
1.9.3.第三阶段的培训:针对加制氢装置培训 2010年11月15日-----2011年1月15日,为期两个月,在装置建设过程中进行培训。培训内容是熟悉本厂生产流程、操作规程和机械、仪表、电气性能,并对照现场实际施工情况进行培训,重点掌握不同工况下的操作和事故处理。1.9.4.第四阶段的培训:岗位培训 2011年1月15日-----2011年3月,为期两个月,员工在经过以上三个阶段的培训后达到上岗要求,上岗后参加现场的预试车工作,在工作中熟悉操作,总结经验。2.特种作业的取证
特种作业是指容易发生人员伤亡事故,对操作者本人、他人及周围设施的安全可能造成重大危害的作业。直接从事特种作业的人员称为特种作业人员。由生产准备组技术部负责制订特种作业人员的取证计划。
根据国家安全生产监督管理局安监管人字[2002]124号文件规定,特殊工种需取得质量技术监督局或安全生产监督局颁发的资格证。3.试生产时间安排 2011年5月1日~ 4.试车的程序
联动试车包括加制氢装置公用系统投用;制氢装置的吹扫、气密,系统干燥置换,催化剂装填、硫化;加氢装置干燥、置换、三剂装填、水运、油运及催化剂的硫化等。开车首先从制氢装置开始,产出合格氢气后,进行加氢装置的试车。在制氢装置产出合格氢气前,油品加氢改质装置结束装完催化剂后的氮气气密,接引合格氢气进行氢气气密及催化剂硫化。进而进行油品加氢改质单元的试车。同时,芳烃选择性加氢精制的前期工作如冲洗、吹扫一并开展。在油品加氢改质单元投料成功后,准备芳烃选择性加氢精制单元的试车。5.联锁及报警系统的调试
5.1.根据设计文件中的联锁/报警整定值表,在工程师站上设定相应数值; 5.2.在系统的信号发生端(即变送器或检测元件处)输入模拟信号,检查系统的逻辑是否正确,检查联锁报警动作是否在规定设置的数值上; 5.3.联锁系统除进行份项试验外,还应进行整套联动试验; 5.4.检查辅助操作台上的紧急停车按钮、试验按钮、复位按钮、信号指示灯等
动作是否正确;
5.5.有关与电气部分相关的联锁和报警,应由仪表及电气人员双方密切配合进
行。
6.安全管理贮备工作
建立健全各项安全管理制度,严格安全操作规程,确保试运行期间不出任何安全责任事故。
6.1.严格按照试生产方案中的危险因素、对策措施及安全批复意见认真实施。6.2.建立健全安全生产管理制度、各岗位生产操作规程、技术规程,编写了事
故预案并进行了救援演练,取得良好教育效果。6.3.严格人员上岗培训,共培训员工40多人次,特种作业人员全部持证上岗,严格执行安全管理制度及操作规程,坚决杜绝超标及违章现象发生。
二、试生产产量产能及产品质量情况 1.40万吨/年油品加氢改质(215)由于设计原因,目前装置只能达到预期负荷的30%(新鲜进料)。为提高产量,试生产期间采用购买常压柴油和返回加氢产品改善进料性质,来提高产量。2.40万吨/年芳烃选择性加氢精制(210),试生产期间实现满负荷生产(50t/h)。
产品均能达到国ⅲ标准。
3.20000nm3/h催化干气制氢,本单元试生产期间根据两套加氢单元耗氢的大 小,来调整装置负荷,试生产期间装置负荷基本在实际负荷的60%左右。产品氢目前纯度基本达标99%。
三、安全环保
1.安全消防工业卫生
1.1.加制氢联合装置严格按规范设计和施工,确保生产的安全和员工的健康。1.2.采用了先进的dcs集散控制系统,自动化程度高,既减轻了工人的劳动强
度和现场作业时间,也减少了工人接触有毒有害物质的机会。使用先进的独立sis紧急停车控制系统,在紧急状态下,可实现装置的安全停车,保
护人身安全和设备安全。
1.3.在产生较大噪音的部位安装了消音、隔音装置,设置隔音操作室,对人员
易接触的高温设备和管线进行了隔热、保温,在可能接触有毒有害物质的区域设置专门的洗眼器、淋浴器。
1.4.按照设计规范,合理设置了安全阀、防爆门、止逆阀等安全设施,设备安
全附件齐全;在化工操作岗位配备过滤式防毒面具和空气呼吸器;为检修和生产重要位置配备了安全带、急救绳、急救箱、长管式防毒面具、化学防护服及其他个人防护用品。1.5.本装置医疗救护依托南京第三医科大学附属医院(原仪化医院),该单位有
完善的救护设施,可提供紧急医疗救护。2.消防设施和器材
2.1.扬州化学工业园区设有消防站,现有2辆消防车、人数20人,距离项目本
装置约1公里,能够满足火险应急需求。2.2.消防水系统:实友化工(扬州)有限公司现有消防水管网,压力0.8mpa(稳
高压),消防水流量为300l/s,消防水罐2个6000m3。能够满足装置在火灾事故时对消防水的需求(170l/s)。消防水在装置区形成环状,并用阀门分割成若干独立段。消防水管网上有消防栓6个、消防炮5只。
2.3.消防冷却水系统:主要包括中间罐和丙烯球罐的固定式式消防冷却水系统。2.4.火灾报警系统:加制氢联合装置设置火灾自动报警系统,与原有火灾自动
报警系统并网,覆盖主装置区、中间罐区、办公楼、仓库、公用工程等。该系统具备消防联动功能。该系统为总线制地址编码型火灾自动报警系统,由报警控制盘、感烟探测器、感温探测器、手动报警按钮、声光报警器、信号模块、控制模块及复示盘等组成。报警控制盘安装在主控室内,防爆手动报警按钮设置在装置区现场和控制室,复示盘安装在消防队。2.5.可燃(有毒)气体检测报警系统:为及时发现氢气、硫化氢、轻烃气等可
燃和有毒气体的泄漏事故,装置区设有可燃气体及有毒气体检测报警器。2.6.灭火器配置:为便于扑灭初期火灾,在火灾危险性大的重要场所,包括装
置区及罐区配备便携式(重量8kg)干粉灭火器。2.7.工业电视监控系统:该监控系统用于监视生产装置的生产情况,设备运转篇三:电厂制氢站培训教材
氢气的制取和发电机的冷却
第一节 发电机的冷却方式 1.发电机冷却的重要性
发电机运转时要发生能量消耗,这是有一种能(机械能)转变为另一种能(电能)时所不可避免的。这些损耗的能量,最后都变成了热量,致使发电机的转子、定子、定子绕组等各部件的温度升高。
因为发电机的部件都是有铜质和铁质材料制成的,所以把这种能量消耗叫做铜损和铁损。为了保证发电机能在绕组绝缘材料允许的温度下长期运行,必须及时地把铜损和铁损所产生的热量导出,使发电机各主要部件的温升经常保持在允许的范围内。否则,发电机的温升就会继续升高,使绕组绝缘老化,出力降低,甚至烧坏,影响发电机的正常运行。因此,必须连续不断地将发电机产生的热量导出,这就需要强制冷却。2.发电机常用的冷却方式
发电机的冷却是通过冷却介质将热量传导出去来实现的。常用的冷却方式有: 2.1 空气冷却。容量小的发电机(两万千瓦以下)多采用空气冷却,即使空气有发电机内部通过,将热量带出。这种冷却方式效率差,随着发电机容量的增大已逐渐被淘汰。2.2 水冷却。把发电机转子和定子绕组线圈的铜线作成空心,运行中使高纯度的水通过铜线内部,带出热量使发电机冷却。这种冷却方式比空气冷却效果好,但必须有一套水质处理系统和良好的机械密封装置。目前,大型机组多采用这种冷却方式。2.3 氢气冷却。氢气对热的传导率是空气的六倍以上,加以它是最轻的一种气体,对发电机转子的阻力最小,所以大型发电机多采用氢气冷却方式,即将氢气密封在发电机内部,使其循环。循环的氢气再由另设的冷却器通水冷却。氢气冷却有可分为氢气与铜线直接接触的内冷式(直接冷却)和氢气不直接与铜线接触的外冷式两种。
当前除了小容量(25mw及以下)汽轮发电机仍采用空气冷却外,功率超过50mw的汽轮发电机都广泛采用了氢气冷却,氢气、水冷却介质混用的冷却方式。在冷却系统中,冷却介质可以按照不同的方式组合,归纳起来一般有以下几种: 2.3.1 定、转子绕组和定子铁芯都采用氢表面冷却,即氢外冷; 2.3.2 定子绕组和定子铁芯采用氢表面冷却,转子绕组采用直接冷却(即氢内冷); 2.3.3 定、转子绕组采用氢内冷,定子铁芯采用氢外冷; 2.3.4 定子绕组水内冷,转子绕组氢内冷,定子铁芯采用氢外冷,即水氢氢冷却方式; 2.3.5 定、转子绕组水内冷,定子铁芯空气冷却,即水水空冷却方式; 2.3.6 定、转子绕组水内冷,定子铁芯氢外冷,即水水氢冷却方式。
我厂2×600mw机组汽轮发电机采用水氢氢冷却方式,即发电机定子绕组采用水内冷,转子绕组采用氢内冷,定子铁芯采用氢外冷。
第二节 冷却介质的性能比较 1.冷却介质的种类和特性
氢冷发电机在正常运行时,使用氢气作为冷却介质,在发电机事故及停机检修时,则采用空气作为冷却介质,co2、n2,则是气体置换过程中的中间介质。对于直接冷却的发电机,除了使用氢气作为冷却介质外,也可以使用水和油。下面分析比较冷却介质的特性: 1.1 空气
空气优点是低廉,所需的附加设备简单,维修方便;缺点是机组的容量受到限制,而且机组容易脏污。1.2 氢气(h2)
氢气冷却有如下优、缺点: 1.2.1优点: 1.2.1.1 通风损耗低,机械(指发电机转子上的风扇)效率高。这是因为在标准状态下,氢气的密度是0.08987kg/m,空气的密度是1.293kg/m,co2的密度是1.977kg/m,n2的密度是1.25kg/m。由于空气的密度是氢气的14.3倍,二氧化碳是氢气的21.8倍,氮气是氢气的13.8倍,所以,使用氢气作为冷却介质时,可使发电机的通风损耗减到最小程度。1.2.1.2散热快、冷却效率高。因为氢气的导热系数是空气的1.51倍,且氢气扩散性好,能将热量迅速导出。因此能将发电机的温升降低10-15℃。1.2.1.3 危险性小。由于氢气不能助燃,而发电机内充入的氢气中含氧又小于2%,所以一旦发电机绕组被击穿时,着火的危险性很小。1.2.1.4 清洁。经过严格处理的冷却用的氢气可以保证发电机内部清洁,通风散热效果稳定,而且不会产生由于脏污引起的事故。1.2.1.5在氢气冷却的发电机,噪音较小,而且绝缘材料不易受氧化和电晕的损坏。1.2.2 缺点: 3333 1.2.2.1 氢气的渗透性很强,易于扩散泄露,所以发电机的外壳必须很好的密封。1.2.2.2氢气与空气混合物能形成爆炸性气体,一旦泄露,遇火即能引起爆炸。因此,在用氢冷却的发电机四周严禁明火。1.2.2.3采用氢气冷却必须设置一套制氢的电解设备和控制系统,这就增加了基建投资及维修费用。
氢气冷却虽有以上一些缺点,但只要严格执行有关的安全规章制度和采取有效的措施还是可靠的,而其高效率冷却则是其它冷却介质无可比拟的,所以大多数发电机还是采用氢冷方式。
1.3 二氧化碳(co2)co2的密度是空气的1.52倍,显然,使用co2作冷却介质,将会使通风损耗成正比地增加,发电机的温度也会显著升高。co2的表面散热系数是空气的1.132倍,且有较高的强行对流作用,但co2的传热能力比空气弱,仅是空气的0.638倍。两项综合比较,用空气冷却和用co2冷却,对发电机的温升影响基本是一样的。co2与机壳内的水分化合后,其反应的生成物会在发电机各部分结垢,使通风恶化,并弄脏机件,对绝缘有腐蚀作用。所以,不允许使用co2作为冷却介质长时间运行。但是,我们可以利用co2与氢气或空气混合时不会发生爆炸的特点,作为气体置换的中间介质。1.4 氮气(n2)
氮气的密度、热传导率及表面散热系数都接近空气,所以,作为冷却介质使用时,其允许的最大负荷值与空气冷却时相同。另外,氮气具有比空气轻,比氢气重,并且不助燃的特点,可用来代替二氧化碳作为中间介质使用,这时对其纯度的要求是:氮的含量在96%以上,氧的含量应低于4%。
氮气作为化工副产品,常含有腐蚀性杂质,对发电机的绝缘材料起腐蚀作用,所以,氮气作为发电机的冷却介质不允许长期使用。2.氢气和水的特性比较
发电机在采用直接冷却方式时,普遍采用氢气和水作为冷却介质。它们与空气的性能比较如下:
表13-1 空气、氢气及水性能比较
从表中的吸热和散热能力看,液体冷却介质比气体冷却介质好。水具有较高的散热性能、粘度小,能通过小而复杂的截面。水的化学性能稳定,不会燃烧,而且具有价廉的特点。但它增加了水路系统,容易腐蚀铜线和漏水,使运行的可靠性降低。
氢气冷却具有通风功率和励磁功率低;装配方便,结构简单,负荷能力高,温度分布均匀等优点,使运行可靠性大为提高。
第三节 电解制氢原理及其系统、设备 1.电解制氢的原理及其工艺 1.1 制氢原理
高纯度的氢气是通过电解纯水而获得的,由于纯水的导电性能较差,则需加入电解质溶液,以促进水的电解。常用的电解质一般为naoh或koh。
将直流电通入加入naoh水溶液的电解槽中,使水电解成为氢气和氧气。其反应式为: 1.1.1阴极反应:电解液中的h(水电解后产生的)受阴极的吸引而移向阴极,最后接受电子而析出氢气,其放电反应是: 2h+2e → h2↑ 1.1.2 阳极反应:电解液中的oh受阳极的吸引而向阳极移动,最后放出电子生成水和氧气,其放电反应是: 2oh-2e → h2o + /2o2↑ 1.1.3 阴、阳极合起来的总反应式为: 2h2o → 2h2↑+ o2↑ 2.工艺流程
高纯度的氢气是通过电解纯水而获得的,由于纯水的导电性能较差,则需加入电解质溶液,以促进水的电解。电解产生的氢气和氧气,分别进入氢气分离洗涤器和氧气分离洗涤器,使气体与携带的碱液分离;分离出的碱液经过滤、冷却后,通过碱循环泵打至电解槽。分离后的氢气进入冷却器冷却,与氧气一同经气动差压调节后,经冷却、干燥进入贮存罐;氧气经过水封直接排入大气;电解消耗的水经过柱塞泵打入氢、氧分离洗涤器进入电解槽内。3.氢氧化钠的作用 氢氧化钠等电解质是强的电解质,溶解于水后便电离,其电离反应式为: naoh = na + oh 这+-–1–++ 样是水溶液中有了大量的na与oh。促进溶液的导电性能,便于水的电解。
氢氧化钠等电解质在水发生电解时,为何不被电解而仍留在溶液中呢?现简略说明如下: 3.1 金属离子在水溶液中的活泼性是不相同的,我们将它们依活泼性的大小排列起来,得到下列活动顺序:
k>na>ca>mg>al>mn>in>fe>ni>sn>pb>h>cu>hg>ag>au 上面排列中,前面的金属比后面的活泼,越往后的金属活泼性越差。
在以上活动次序中,h之所以列为金属,这是因为它能起金属的作用,在水中常成h存在,而且确实能被它前面的的金属置换。例如: zn + h2so4 = znso4 +h2↑ 3.2 电极电位。金属的活动次序说明越活泼的金属越容易失去电子,活泼性较差的金属则容易得到电子(前后金属比较而言)。从电化学理论上讲就是:容易得到电子的金属离子与不容易得到电子的金属离子相比较,因前者的电极电位高能得到电子而转为原子,而后者的电极电位低不能得到电子转为原子。这种电位叫“电极电位”。h和na比较,na的电极电位为-2.86,而h的电极电位为-1.71。所以在同一水溶液中若同时存在na和h时,h先放电而成h2。3.3 离子的水化。水是极难电离的,但水中溶解有naoh时,在na的周围。围绕着水的分子而成水合na,而且因na的作用使水分子有了极性方向。
当na带有极性方向的水分子迁向阴极时,h首先放电而成h,而na则仍存在于水中。3.4 电解液中加五氧化二钒的作用
电解液配制时,须加入一定量的五氧化二钒(千分之二浓度)。五氧化二钒的加入,可对电极的活化起催化作用,能改变电极表面状态,增加电极的电导率;有利于除去电极表面的气泡,降低电解液的含气度;在铁、镍金属表面产生保护膜,从而起到缓蚀作用。4.制氢系统
电解水制取氢气的主要设备为电解槽。在电解槽后连有若干系统,其中主要是氢侧系统、氧侧系统及补给水系统,另外还有碱液系统。4.1 氢侧系统。由电解槽各间隔分解出来的氢气汇集于总管,经氢侧分离器洗涤器、冷却器、压力调节阀,再经两级干燥吸附后,存入氢罐备用。4.2 氧侧系统。由电解槽各间隔分解出来的氧气汇集于总管,经氧侧分离器洗涤器、压力调节阀和水封槽后,排放大气或存罐备用。4.3 补给水系统。在电解水的过程中,水陆续地被消耗掉,所以必须连续不断地补充除盐水。系统通过加水泵将除盐水打至氢分离洗涤器中,来补充电解消耗的除盐水。
++++++++++++++++-篇四:制氢工艺技术分析
煤制氢工艺技术分析 1.氢气
16世纪,瑞士科学家帕拉塞斯和17世纪的一些科学家,都发现了金属跟酸起反应产生一种可燃性气体----氢气。当时人们还不认识它,只把它当作一种可燃性的空气。直到1766年英国科学家卡文迪许才确认氢气与空气不同,并测定氢气的密度是空气密度的1/14.38。他在1781年又进一步指出,氢气在空气中燃烧生成水。1783年拉瓦锡重做了实验,证明水是氢燃烧后的唯一产物。1787年拉瓦锡给它命名为hydrogen,意思是“成水元素,并确认它是一种元素。早年间人们称之为”轻气“,后定名为氢(日本现仍称之为水素)。
氢气是无色并且密度比空气小的气体(在各种气体中,氢气的密度最小。标准状况下,1升氢气的质量是0.0899克,相同体积比空气轻得多)。因为氢气难溶于水,所以可以用排水集气法收集氢气。另外,在101千帕压强下,温度-252.87℃时,氢气可转变成无色的液体;-259.1℃时,变成雪状固体。常温下,氢气的性质很稳定,不容易跟其它物质发生化学反应。但当条件改变时(如点燃、加热、使用催化剂等),情况就不同了。如氢气被钯或铂等金属吸附后具有较强的活性(特别是被钯吸附)。金属钯对氢气的吸附作用最强。当空
气中的体积分数为4%-75%时,遇到火源,可引起爆炸。2.氢气的用途
氢是公认的最洁净的燃料,也是重要的化工合成原料。但它不是一次能源,它是要从一次能源通过转换生产出来的能量载体。它又是一种气体燃料,在输送分配方面相对地存在着一定困难。中国又是一个以煤为主要一次能源的国家,所以,就要应用“环境、能效、经济”的生命周期研究方法,结合国情和地区的实际,用系统工程的眼光来全面地评估中国氢的生产和应用;要结合地区的实际,选择先进的技术,合理的方法来生产和应用氢,以获得最大的经济和环境效益。3.工业制氢的方法
氢气作为重要的工业原料和还原剂,在国民经济各领域
被广泛地使用。工业制氢的方法主要有以下几种方法。3.1一次能源转化制氢
1、煤气化制氢技术,是指煤与气化剂(水蒸气或氧气)在一定的温度和压力等条件下发生化学反应而转化为煤气的工业化过程,且一般是指煤的完全气化,即将煤中的有机质最大限度地转变为有用的气态产品(主要成分为一氧化碳),而气化后的残留物只有灰渣。然后一氧化碳经过变换、分离和提纯处理获得一定纯度的产品氢。
2、天然气水蒸气重整制氢。其主要工艺为:天然气经过压缩,送至转化炉的对流段预热,经脱硫处理后与水蒸气混合,进入转化炉加热后进入反应炉,在催化剂的作用下,发生蒸气转化反应以及一氧化碳变换反应,出口混合气含氢量约为70%,经过提纯可以得到不同纯度的氢气产品。
3、甲醇裂解制氢。其主要工艺为:甲醇和水的混合液经过预热、气化后,进入转化反应器,在催化剂作用下,同时发生甲醇的催化裂解反应和一氧化碳的变换反应,生成约75%的氢气和约25%的二氧化碳以及少量杂质。该混合气经过提纯净化,可以得到纯度为98.5%~99.9%的氢气。该法的原料易得且储运方便,受地域限制较少,适于中小制氢用户使用。
一次能源转换制氢成本低廉,工艺流程短,操作简单,能源利用合理,是目前广泛采用的最经济的制氢技术之一,但有时需要高温条件进行反应,因此能耗较高,而且反应有时需要耐高温的不锈钢管做反应器,装置规模大,投资高。3.2电解水制氢
电解水制氢的原理是当两个电极分别通上直流电,并且浸入水中时,在直流电的作用下,水分子分解为氢离子和氢氧根离子,在阳极氢氧根离子失去电子产生氧气,在阴极氢离子得到电子产生氢气。电解水制氢的效率较高,且工艺成熟,设备简单无污染,但耗电量较大,一般氢气电耗为
4.5~5.5kw/m3,使其应用受到一定的限制。但随着电解水工
艺、设备的不断改进(例如开发采用固体高分子离子交换膜为电解质,选用具有良好催化活性的电极材料,在电解工艺上采用高温高压参数以利于反应进行等),水电解制氢技术将会有更好的应用和发展。电解水制氢技术制得的氢气纯度高,操作简便,制氢过程不产生二氧化碳,无污染,但其耗电大,生产成本高,电费占整个生产费用的80%左右。3.3其他含氢物质制氢
1、氨分解制氢
氨气在催化剂存在和高温条件下可以分解为氮气和氢气,氨气分解制氢所用的催化剂一般为镍或铁,其工艺为:液氨经预热、蒸发变为气氨,在800℃高温下催化分解为氢气和氨气,经过气体分离与提纯得到高纯氢气。此外,肼由于其分子式及性质均与氨气类似,也可以利用相同的原理进 行分解转化制氢。
2、硫化氢分解制氢 国外多次报道由硫化氢分解制氢技术,我国有丰富的硫化氢资源,自20世纪90年代就有多家单位开展了这方面的研究。如石油大学的间接电解法双反应系统制取氢气与硫磺的研究取得了较大进展,还有中国科学院感光研究所等单位进行的多相光催化分解硫化氢的研究及微波等离子体分解硫化氢制氢的研究等,都为今后充分合理利用宝贵资源,提供清洁能源及化工原料奠定了基础。
3、化工副产物氢气回收
邱长春等人报道了利用含氢工业尾气或过程气生产高纯氢气的方法。此外,多种化工过程如电解食盐制碱工业、发酵制酒工艺、合成氨化肥工业、石油炼制工业等均有大量副产氢气,如能采取适当的措施进行氢气的分离回收,每年可以得到数亿立方米的氢气,这将是一笔不容忽视的资源,应设法加以回收利用。3.4氢气生产新技术
太阳能制氢,生物制氢,硼氢化钠催化水解制氢。4.炼厂制氢工艺的选择
当前,炼厂普遍面临着原料劣质化,成品油市场轻质化、优质化,环保标准和要求不断提高的局面,面对这样的局面,炼厂的唯一出路就是提高石油的深加工能力,提高轻质油品和优质产品的产能,这一切都离不开加氢技术的应用,而加氢技术的应用首先要有稳定可靠的氢源,但是仅通过炼厂自身和传统的加工方式已难以解决全厂的氢气平衡和需求,通过其他原料和加工工艺获得廉价的氢源来满足炼厂的生产需求是一个行之有效的解决方案,也是大势所趋。
规模化的制氢技术主要有轻烃蒸汽转化法和非催化部分氧化法(气化法)。
非催化部分氧化法(气化法)按原料分类, 可分为轻烃(天篇五:制氢培训讲义 1.制氢装置设计及改造情况 43大连西太平洋石油化工有限公司制氢装置规模为6×10nm/h。两套加氢、脱硫、转化 炉、中变采用国内技术;净化系统为变压吸附法,技术为德国林德(linde)公司专利,引
进控制计算机、成套阀门、管线、仪表和吸附剂,吸附罐为国内制作,林德公司制造技术。
设计单位为中国石化北京设计院。
本装置由下列五部分组成:
(1)原料油干法加氢、脱硫部分
(2)转化及相应对流段热回收部分
(3)中温变换及变换气换热冷却部分
(4)psa中变气净化部分
(5)开工及循环氢压缩机及酸性水汽提部分
装置的加氢、脱硫、转化、中变过程采用两个系列。psa部分则为一个系列。原料设计时以轻质油(重整拔头油或轻石脑油)为主,同时应用少量液化气和ards装置弛
放干气。98年7月至今,由于重整装置停工未开,制氢原料改为重整精制油。
产品纯度为h2>99.9%。
产品主要供常渣油加氢脱硫(ards)装置、蜡油加氢精制装置及煤柴油加氢精制装置、聚丙烯用。
施工图设计于1992年12月末完成,1995年末基本建成,1997年7月正式投产。1998年2 月经标定达到设计规模,生产稳定,质量良好。2.生产装置工艺原理
本制氢工艺采用以轻质油(重整拔头油或轻石脑油)为原料.经干法加氢、脱硫后与水蒸汽混合,经催化剂转化产生h2、co及co2。转化气再经中温变
换将co与转化气中水蒸汽反应成co2同时再产生部分h2。中变气经换热、冷却分液后进往psa吸附部分脱除中变气的ch4、co和co2,生产纯度为 99 9%(v)的氢。rs+h2→r+h2s h2s+zn o→zns+ h2 o r+ h2 o→ch4+co+co2 ch4+ h2 o→3 h2+co-q co+ h2 o→h2+co2+q 3.生产装置工艺流程详述
本装置设计原料主要是重整拔头油,工艺流程大致可分为五部分:(设计条件)
(1)原料脱硫部分(分a、b两系列,以a系列为例,下同)40℃的重整拔头油自装置外进原料缓冲罐d-101,经原料泵p-101/1升压至4.0mpa。升 压后的原料油与从配氢压缩机k-101/1来的3.9mpa的氢气(或ards装置干气、富氢)混合进入中变气-原料油蒸发器e-104(管程),换热至360℃后进加氢反应器r-101(入口压力
约3.35mpa)。在加氢反应器内将原料中的有机硫转变成无机硫,同时将原料中的少量烯烃
饱和。r-101出来的约3.25mpa、360℃的加氢后的气体进入两台串联的氧化锌脱硫反应器 r-102/1.2(设计流程中考虑了两台反应器可串、可并的操作)。经氧化锌脱硫后的气体中
含硫量由约100ppm(v)降至0.3ppm以下,出口气体压力为3.15mpa。
(2)转化及变换部分:
经脱硫合格的气体(烯烃含量1%(v)以下,含硫量0.3ppm以下),与3.50mpa蒸汽
混合后进入转化炉f-101原料预热段,正常操作水/碳比控制在3.7~4:1(mol/mol),进
入原料预热段前温度为415℃,经预热段后温度为500℃,压力为3.05mpa,进入转化炉f-101 辐射段(转化段),转化管内上下分别装有z-402/z-405g催化剂,各装一半。转化炉出口-1温度725-800℃,压力2.70mpa(绝),碳空速约为890时,残余甲烷含量3-7%(v)。
自转化炉管出来的转化气,经转化气废热锅炉er-101回收热量,转化气温度由800℃
降至350~370℃,进入中温变换反应器r-103,选用b-113催化剂,开工初期催化剂活较好,温度控制在低限约340℃,末期可提高到380℃,出口温度≯420℃,co含量1-3%(干)。
自r-103出来的中变气经e-104(中变气-原料油蒸发器),e-103(1.0mpa蒸汽过热器),er-102(1.0mpa蒸汽发生器),e-102/1.2(中变气-除氧水换热器)换热至164℃进入d-111(中变气第一分液罐),将冷凝液分离后进入e-101(中变气-除盐水换热器),出口温度 146℃进d-112(中变气第二分液罐),分出冷凝液后,经ec-101/1~6(中变气空冷器)及 d-113(中变气第三分液罐)分液后进入e-105(中变气水冷器)冷却至40℃经d-114(中
变气第四分液罐)分液后进入psa系统。
(3)转化及变换部分所用锅炉水及蒸汽系统:
锅炉用除盐水自外部送来经e-101温度升至104℃进入脱氧槽d-108,用泵p-102/1(锅
炉给水泵)抽出进入e-102/1.2,出口温度180℃,分成两部分,一部分进入低压汽包d-107 及er-102,发生1.0mpa蒸汽。蒸汽再经e-103过热至250℃进入1.0mpa蒸汽管网。另一部
分直接进入中压汽包d-103及转化炉废热锅炉er-101。转化气废热锅炉和烟道气废热锅炉
均为自然循环式;产3.50mpa、243℃的饱和蒸汽自汽包引出进入转化炉f-101的蒸汽过热
段,过热至435℃后分成两部分,一部分(46.04t/h)与原料气混合,另一部分作为外供蒸
汽出装置。
(4)氢气净化部分(两个系列合用一套):
自a系列、b系列来的中变气混合后进入psa系统,进口压力为2.1mpa,氢气回收率 88%,出口气体即为产品氢气,其余为尾气。尾气去两列转化炉用于燃料,不足的用瓦斯,燃
烧后的烟道气放大气。具体情况见表
(一)(5)酸性水处理系统:
自中变气第一、二、三、四分液罐分出的co2酸性水(两系列合在一起)进酸性水汽提 塔c-101,用1.0mpa蒸汽汽提后进e-108(酸性水-热水换热器)冷却至80℃进泵p-104升
压后进e-107(酸性水冷却器),降温至40℃送往全厂脱盐水罐。psa工艺原理
变压吸附工艺是一个物理吸附的过程,以氢和氦为代表的具有高挥发性低极性分子,与其它分子如 co2、co、n2、烃类相比,没有吸附性能。由此绝大多数的杂质在粗氢原料中被选择吸附,从而得到
高纯度的产品氢。2.1 概述
变压吸附工艺工作于两个不同的压力等级。? 吸附杂质是在高压下完成的,杂质被吸附在吸附剂上。? 解吸或再生是在低压下完成,以便尽可能降低杂质在吸附剂上的吸附,从而达到高的产品氢纯
度,psa在吸附与解吸时,吸附剂上承载的杂质数量相差越大,psa的氢收率越高。
此工艺过程在常温下进行,再生步骤无须热量,因为吸附过程只有少量放热,解吸和泄压过程中有
少量吸热,所以整个工艺过程只有轻微的温度变化,吸附剂不会因为热量的影响而导致失活,所以
会有极长的使用寿命。2.2 吸附和再生循环周期 pressure swing adsorption(psa)装置是为连续提纯粗氢而设计的,尽管psa工艺过程从表面
上看是连续的过程,实际上它是由多个并列运行步位组成的不连续过程。总而言之,每一个吸附器
都按照一定的规律循环进行,以完成变压吸附工艺过程。变压吸附工艺过程基于两个基本步骤,吸
附和解吸,而解吸步骤是由一连串子步骤组成: ? 由高压过渡到低压:“泄压”、“提供吹扫”和“排放”。? 在低压下“吹扫”。? 由低压转换到吸附压力:“升压”。
吸附分离工艺是连续提供产品氢的过程,它是由多个装满吸附剂的压力容器、相互连接的管道以及
各自的控制阀组成。在操作过程中,至少一个吸附器处于高压吸附状态,从原料气中分离杂质,与
此同时,另外的吸附器在进行再生。控制程序保证了工艺过程的有序进行,按要求切换处于吸附状
态的吸附器,使杂质绝不会通过吸附器窜入产品氢,因此程序必须确保有吸附器处于吸附状态时,另外的吸附器能够得到充分的再生和升压,以取代处于吸附步位即将达到杂质承载能力的吸附器。
吸附
原料气自吸附器底部至顶部穿过,如 co2、烃、co等杂质被选择吸附在吸附剂表面。提纯后的产品 氢自吸附器顶部排到产品氢总管。
由于该系统尽量利用残留在吸附器中的氢气(在吸附步位后)来均压、升压和给其它吸附器提供吹
扫气,因此,psa系统在氢气利用方面有很高的效率。
在吸附过程中,产品氢纯度保持稳定,在吸附周期结束时,产品氢中开始有微量杂质,这表明吸附
器已经吸附满了杂质,需要进行再生。
再生
吸附器在吸附步位吸附满了杂质后,再生分四个基本步骤进行: ? 吸附器按照原料气流向泄压到较低压力,利用该吸附器储存的氢气给其它的吸附器升压或吹
扫。? 吸附器逆向泄压,排放至尾气,(供吹扫步位、排放步位),除掉吸附剂上的杂质。? 利用供吹扫步位吸附器提供的氢气或氢气总管的纯氢吹扫该吸附器,除掉吸附剂上残留的杂
质。
? 吸附器利用均压步位提供的纯氢或者氢气总线的纯氢逐步升压到吸附压力。2.3 产品氢
符合设计规范要求的高纯度氢气从吸附器顶部排入产品氢线。产品氢压力等于原
料压力减去psa单元的压力损失。2.4 尾气
尾气在尾气系统中进行混合,使尾气组成、流量和压力稳定。尾气系统由两个尾
气罐,调节流量压力和分子量的控制器组成。2.5 工艺条件对psa装置的影响 psa加工能力表示在给定的操作条件下,所能加工的原料气量。氢收率是产品氢
量与原料气中氢总量的百分比。以下是对吸附能力和氢收率有影响的主要工艺条
件。
原料气加工能力与吸附压力的关系
气体组分如co、co2、ch4、c2等,在吸附剂上的吸附量随着吸附压力的增加 而增加,因此吸附能力随着吸附压力的增加而提高,随着吸附压力降低而减少。
氢收率与吸附压力的关系
通常情况下,氢收率随着吸附压力升高而提高,随着吸附压力的降低而降低。
原料起讫加工能力与解吸压力的关系
吸附了杂质的吸附器随着压力的降低得到了再生,解吸压力越低再生效果越好,如果解吸压
力升高,残留在吸附剂上的杂质的量也升高,结果,吸附能力也随之降低。因此,吸附能力随着
解吸压力的降低而升高,随着解吸压力的升高而降低。
氢收率与解吸压力的关系
在通常情况下,氢收率随着解吸压力的降低而升高,随着解吸压力的升高而降低。2-4 原料加工能力与吸附温度和解吸温度的关系
吸附剂对原料加工能力随着原料温度上升而降低,但是较高的原料温度会有较好的吹扫效果,最佳的psa运行温度是15-40,较高的温度是允许的,但是随着温度的上升,会降低吸附能力,应当避免吸附温度低于10,温度与吹扫效果成反比。
等温曲线随着温度上升而降低,吸附和解吸在压力下,影响效果是装载量有较低的差别。以下
图表解释这种效果。
原料气组分
吸附器吸附能力取决于被吸附气体的种类与总量,原料气组成的影响可分为以下种类:
注意要绝对避免原料气中的液体,因为液体会损坏吸附剂。
产品纯度
吸附能力总是随着产品纯度升高而降低,随着产品纯度降低而升高 linde-psa专家培训总结
一、psa开车新旧区别: 1.psa旧版开车有自动均压功能,而在新版中,此功能被取消。我们认为此功能有两点好处:a.此功能能使psa自己调整各吸附器压力,尽可能的减少现场手动调整需要的时间和现场阀门开
关所带来的不必要的麻烦。b.psa自身压力调整也是对各电磁阀的再次检验,对于判断故障阀
门很有必要。基于以上两点,我们征求linde专家意见,他也认为旧版此项功能很有必要,我
们希望专家带回linde总部,给予答复。2.psa新版开车规程增加产品氢总管压力低无法开车,此项锁定,我们认为很有必要,保证psa 开车产氢后由于产品氢总管压力低而产生的波动,这对psa开车时的稳定运行很有必要。
二、psa逻辑联锁新旧的区别: 1.psa新版的停车联锁逻辑中,吸附压力高高联锁已摘除,linde专家并未给予合理的理由加以解
释,我们希望专家带回linde总部,给予合理和充分的解释。
第二篇:PSA制氢
1、吸附剂及吸附力
工业PSA制氢装置所用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、硅胶类、活性炭类和分子筛类。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。本装置所用吸附剂的特性如下 1).AS吸附剂
在大型PSA氢提纯中的应用结果表明:我公司的AS吸附剂对H2O均有很高的吸附能力,同时再生非常容易,并且该吸附剂还具有很高的强度和稳定性,因而适合于装填在吸附塔的底部脱除水分和保护上层吸附剂。2).HXSI-01吸附剂
本装置所用PSA专用硅胶属于一种高空隙率的无定型二氧化硅,化学特性为惰性,无毒、无腐蚀性.其中规格为Φ1-3球状的硅胶装于吸附塔中下部,用于吸附水分和CO2。3).HXBC-15B吸附剂
本装置所用活性炭是以煤为原料,经特别的化学和热处理得到的孔隙特别发达的专用活性炭。属于耐水型无极性吸附剂,对原料气中几乎所有的有机化合物都有良好的亲和力。本装置所用活性炭规格为Φ1.5条状,装填于吸附塔中部主要用于脱除CO2组分。4).HX-CO专用吸附剂
本装置所用的HX-CO专用吸附剂是一种以活性碳为载体的对CO有良好吸附和解吸能力的吸附剂,装填于吸附塔的上部,用于脱除CO2和CO。5).HX5A-98H吸附剂
本装置所用的分子筛为一种具有立方体骨架结构的硅铝酸盐,规格为Φ2-3球状,无毒,无腐蚀性。HX5A-98H吸附剂不仅有着较大的比表面积,而且有着非常均匀的空隙分布,其有效孔径为0.5nm。HX5A-98H吸附剂是一种吸附量较高且吸附选择性极佳的优良吸附剂,装填于吸附塔的上部,用于脱除甲烷、CO、N2,保证最终的产品纯度。
2、吸附剂的处理
几乎所有的吸附剂都是吸水的,特别是HX5A-98H吸附剂具有极强的亲水性,因而在吸附剂的保管和运输过程中应特别注意防潮和包装的完整性,如果受潮,则必须作活化处理。对于废弃的吸附剂,一般采用深埋或回收处理。但应注意:在卸取吸附剂时,必须先用氮气进行置换以确保塔内无有毒或爆炸性气体。在正常使用情况下,PSA工段的吸附剂一般是和装置同寿命的。
吸附力:在物理吸附中,各种吸附剂对气体分子之所以有吸附能力是由于处于气、固相分界面上的气体分子的特殊形态。一般来说,只处于气相中的气体分子所受的来自各方向的分子吸引力是相同的,气体分子处于自由运动状态;而当气体分子运动到气、固相分界面时(即撞击到吸附剂表面时),气体分子将同时受到固相、和气相中分子的引力,其中来自固相分子的引力更大,当气体分子的分子动能不足以克服这种分子引力时,气体分子就会被吸附在固体吸附剂的表面。被吸附在固体吸附剂表面的气体分子又被称为吸附相,其分子密度远大于气相,一般可接近于液态的密度。
固体吸附剂表面分子对吸附相中气体分子的吸引力可由以下的公式来描述: 分子引力F=C1/rm-C2/rn(m>n)
其中:C1表示引力常数,与分子的大小、结构有关
C2表示电磁力常数,主要与分子的极性和瞬时偶极矩有关
r表示分子间距离
因而对于不同的气体组分,由于其分子的大小、结构、极性等性质各不相同,吸附剂对其吸附的能力和吸附容量也就各不相同。PSA制氢装置所利用的就是吸附剂的这一特性。由于吸附剂对混合气体中的氢组分吸附能力很弱,而对其它组分吸附能力较强,因而通过装有不同吸附剂的混合吸附床层,就可将各种杂质吸附下来,得到提纯的氢气。下图为不同组分在分子筛上的吸附强弱顺序示意图 组分
吸附能力
氦气
☆
弱 氢气
☆
氧气
☆☆
氩气
☆☆
氮气
☆☆☆
一氧化碳
☆☆☆
甲烷
☆☆☆☆
二氧化碳
☆☆☆☆☆☆
乙烷
☆☆☆☆☆☆
乙烯
☆☆☆☆☆☆☆
丙烷
☆☆☆☆☆☆☆
异丁烷
☆☆☆☆☆☆☆☆
丙烯
☆☆☆☆☆☆☆☆
戊烷
☆☆☆☆☆☆☆☆ 丁烯
☆☆☆☆☆☆☆☆☆
硫化氢
☆☆☆☆☆☆☆☆☆☆
硫醇
☆☆☆☆☆☆☆☆☆☆ 戊烯
☆☆☆☆☆☆☆☆☆☆☆ 苯
☆☆☆☆☆☆☆☆☆☆☆☆ 甲苯
☆☆☆☆☆☆☆☆☆☆☆☆
乙基苯
☆☆☆☆☆☆☆☆☆☆☆☆☆☆
苯乙烯
☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆
水
☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆
强
3、吸附平衡
吸附平衡是指在一定的温度和压力下,吸附剂与吸附质充分接触,最后吸附质在两相中的分布达到平衡的过程。在实际的吸附过程中,吸附质分子会不断地碰撞吸附剂表面并被吸附剂表面的分子引力束缚在吸附相中;同时吸附相中的吸附质分子又会不断地从吸附剂分子或其它吸附质分子得到能量,从而克服分子引力离开吸附相;当一定时间内进入吸附相的分子数和离开吸附相的分子数相等时,吸附过程就达到了平衡。对于物理吸附而言,动态吸附平衡很快就能完成,并且在一定的温度和压力下,对于相同的吸附剂和吸附质,平衡吸附量是一个定值。
由于压力越高单位时间内撞击到吸附剂表面的气体分子数越多,因而压力越高平衡吸附容量也就越大;由于温度越高气体分子的动能越大,能被吸附剂表面分子引力束缚的分子就越少,因而温度越高平衡吸附容量也就越小。在温度一定时,随着压力的升高吸附容量逐渐增大;在压力一定时,随着温度的升高吸附容量逐渐减小。制氢装置的工作原理利用的是气体的吸附与解吸。吸附剂在常温高压(即A点)下大量吸附原料气中除氢以外的杂质组分,然后降低压力(到B点)使各种杂质得以解吸。
4、装置概况
a.原料
PSA单元处理的原料为变换气,其组成见下表。
原料组成:
组成H2
CO
CO2
CH4
H2O
Σ
含量V%
74.68
2.90
16.39
5.38
0.47
流量:15000Nm3/h
压力:2.5MPa(G)
温度:≤40℃
b、产品
产品为氢气,质量要求 H2:≥99.9%
杂质含量:CH4<0.1%; CO<10ppm; CO2<20ppm;其他:970ppm
压力:2.5MPa
流量:10000Nm3/h
c.副产物
副产物为解吸气,当装置收率为82%时,其组成如下表。副产物组成
组成H2
CO
CO2
CH4
Σ V%
21.76
7.81
44.19
14.50
输出压力:0.02MPa(G)
温度:≤40℃
流量:5000Nm3/h
5、工艺原理
a.工艺原理
变换气中的主要组份是H2,其它杂质组份有CO、CO2、CH4、水等。•PSA单元由8塔变压吸附氢提纯系统(PSA)组成,在变压吸附氢提纯系统脱除大部分杂质组份,得到纯净的氢气产品。
变压吸附原理是利用不同气体组份相同压力下在吸附剂上的吸附能力不同和同一气体组份不同压力下在吸附剂上的吸附容量有差异的特性,来实现对混合气中某一组份的分离提纯。变换气中氢是吸附能力最弱的组份,吸附压力下变换气中的其它强吸附组份被吸附在固体相吸附剂中,在吸附塔出口端获得弱吸附组份产品氢气。通过降压、逆放和冲洗方式使强吸附组份从吸附剂上脱附出来,吸附剂得到再生,用于下一个吸附分离过程。八个吸附塔交替循环操作,达到连续制取氢气的目的。
b、工艺流程
来自界区外的压力2.5MPa(G)、温度40℃的变换气从塔底部进入吸附塔(T4101A~H)中正处于吸附工况的塔(始终有1台),在多种吸附剂组成的复合吸附床的依次选择吸附下,一次性除去氢以外的几乎所有杂质,直接获得纯度大于99.9%的产品氢气从塔顶排出,然后经吸附压力调节阀PV4703A稳压后送出界区。
PSA单元除送出产品氢外,还产生逆放解吸气和冲洗解吸气。逆放解吸气来自于吸附床的逆放步骤,冲洗解吸气产生于冲洗步骤,所有解吸气最后均送解吸气混合罐V4103。逆放解吸气和真空解吸气在混合罐中混合后送往转化炉进行燃烧。
6、变压吸附氢提纯系统(PSA)工艺过程 a、吸附塔的工作过程依次如下: 吸附过程
原料气经程控阀XV4701A~H,自塔底进入PSA吸附塔T4101A~H中正处于吸附状态的1台吸附塔,其中除H2以外的杂质组分被装填的多种吸附剂依次吸附,得到纯度大于99.9%的产品氢气从塔顶排出,经程控阀XV4702A~H和吸附压力调节阀PV4703A后送出界区。
均压降压过程
这是在吸附过程完成后,顺着吸附方向将塔内较高压力气体依次放入其它已完成再生的较低压力塔的过程,这一过程不仅是降压过程,而且也回收了吸附床层死空间内的氢气,本装置主流程共包括四次连续均压降压过程,分别称为:一均降(E1D)、二均降(E2D)、三均降(E3D)、四均降(E4D)。一均降通过程控阀XV4703A~H进行,二均降、三均降通过程控阀XV4704A~H进行,四均降通过程控阀XV4706A~H进行。顺放过程
均压过程结束后,吸附塔压力仍有0.49MPa左右,而此时的杂质吸附前沿仍未到达床层顶部,故可通过顺放获得冲洗再生气源。顺放过程通过XV4706A~H、XV4710进行,顺放气进入顺放气罐V4101。逆放过程
这是吸附塔在完成顺放过程后,逆着吸附方向将塔内压力降至0.05MPa的过程,此时被吸附的杂质开始从吸附剂中解吸出来。逆放解吸气经程控阀门XV4708A~H及调节阀PV4705A放入逆放缓冲罐V4102,逆放后期,压力小于0.05MPa的少量逆放气再经压力调节阀PV4705B调节到后进入解吸气混合罐V4103。冲洗过程
在这一过程中,用来自于顺放气罐V4101的氢气逆着吸附方向对吸附床冲洗,使吸附剂中的杂质得以完全解吸。冲洗通过程控阀XV4705A~H、XV4707 A~H,调节阀PV4704进行,冲洗解吸气进入解吸气混合罐V4103。逆放气和冲洗解吸气于V4103中混合后送去制氢转化炉。
均压升压过程
该过程与均压降压过程相对应。在这一过程中,分别利用其它吸附塔的均压降压气体依次从吸附塔顶部对吸附塔进行升压。本装置主流程共包括四次连续均压升压过程,依次称为:四均升(E4R)、三均升(E3R)、二均升(E2R)和一均升(E1R)。产品气升压过程
经过四次均压升压过程后,再用产品氢经程控阀XV4709、XV4703A~H和调节阀PV4708将吸附塔压力升至吸附压力。经这一过程后,吸附塔便完成了整个再生过程,为下一次吸附做好了准备。
工艺流程特点: 与传统PSA流程相比,本装置流程具有如下特点:
均压次数多,氢气回收充分,氢气损失小。
冲洗时间连续,冲洗过程和冲洗气流量稳定,吸附剂再生效果好。
特殊的复合床吸附剂装填使本装置能同时适用于脱除变换气中除氢以外的全部杂质。采用多床同时吸附的PSA流程,吸附循环周期短、吸附剂利用率高。本装置的自动切塔程序实现了对故障塔的不停车检修。b、工艺步序说明
本装置共由8台吸附塔组成,其中1台始终处于吸附状态,其余7台处于再生的不同阶段。吸附塔的整个吸附与再生过程都是通过66台程控阀门按一定的工艺步序和顺序进行开关来实现的。为便于识别这些程控阀门和表述整个工艺过程,我们首先按一定的规律对程控阀进行编号: XV 4 □□ □
吸附塔号:A~H 阀门功能、作用 01-原料气进口阀 02-产品气出口阀 03-一均、产品气升压阀 04-二均、三均阀 05-冲洗进口阀 06-四均、顺放阀 07-冲洗出口阀
08-逆放阀
09-产品气升压公共阀 10-顺放公共阀
表示变换气PSA氢提纯工段
表示程序控制阀
7、步序描述: 注: ON--阀门开
A:吸附 E1D~E4D:一均降压~四均降压 P:顺放 D:逆放
PP:冲洗 E1R~E4R:一均升压~四均升压 FR:产品升压
现以吸附塔T4101A(简称A塔)为例描述主流程的整个工艺步序过程,T4101B~H的工艺过程与T4101A完全相同(主流程时序图及阀态表详见附表一)。
☆ 步序1:吸附(A)原料气经程控阀XV4701A进入PSA吸附塔T4101A,其中除H2以外的杂质组份被吸附塔中装填的多种吸附剂依次吸附,得到纯度大于99.9%的产品氢气经程控阀XV4702A排出。大部分氢气经压力调节阀PV4703A稳压后送出界区,少部分氢气通过程控阀XV4709后用于B、C两塔的产品气升压。随着吸附的进行,当杂质的前沿(即:吸附前沿)上升至接近吸附床一定高度时,关闭XV4701A、XV4702A,停止吸附。这时,吸附前沿与吸附床出口间还留有一段未吸附饱和的吸附剂,称为预留段。
☆ 步序2:一均降压(E1D)在吸附过程完成后,打开程控阀XV4703A和XV4703D,将A塔内较高压力的氢气放入刚完成了二均升的D塔,直到A、D两塔的压力基本相等为止。这一过程不仅是降压过程,而且也回收了A塔床层死空间内的氢气。在这一过程中A塔的吸附前沿将继续向前推移,但仍未达到出口。
☆ 步序3:二均降压(E2D)在一均降过程完成后,打开程控阀XV4704A和XV4704E,将A塔内较高压力的氢气放入刚完成三均升的E塔,用于E塔的二均升。这一过程继续回收A塔床层死空间内的氢气,同时A塔的吸附前沿也将继续向前推移,但仍未达到出口。☆ 步序4:三均降压(E3D)在二均降过程完成后,打开程控阀XV4704A和XV4704F,关闭XV4704E将A塔内较高压力的氢气放入刚完成了四均升的F塔,用于F塔的二均升,直到A、F两塔的压力基本相等为止。这一过程同样是继续回收A塔床层死空间内的氢气,同时A塔的吸附前沿也将继续向前推移,但仍未达到出口。步序5:四均降压(E4D)在三均降过程完成后,打开程控阀XV4706A和XV4706G,将A塔内较高压力的氢气放入刚完成了冲洗再生的G塔,直到A、G两塔的压力基本相等为止。这一过程继续回收A塔床层死空间内的氢气,同时A塔的吸附前沿也将继续向前推移,同时A塔的吸附前沿也将继续向前推移,但仍未达到出口。
步序6:顺放(P)四均降过程结束后,吸附塔压力仍有0.49MPa左右,此时通过程控阀XV4706A和XV4710将塔内较高压力的氢气放入顺放罐V4101。
☆ 步序7:逆放(D)在完成连续顺向减压过程后,A塔的吸附前沿已基本达到床层出口。这时打开XV4708A,逆着吸附方向将A塔压力降至接近于常压,此时被吸附的杂质开始从吸附剂中解吸出来。逆放解吸气大部分经调节阀PV4705A放入解吸气缓冲罐V4102,再经调节阀PV4706稳压后进入解吸气混合罐V4103,少量经调节阀PV4705B直接进入解吸气混合罐V4103。☆ 步序8:冲洗(PP)逆放结束后,打开程控阀门XV4705A、XV4707A,对A塔进行冲洗,这时被吸附的杂质大量解吸出来,并逆着吸附方向流入解吸气混合罐V4103。
步序9:四均升压(E4R)在冲洗过程结束后,打开程控阀XV4706A和XV4706C,利用C塔内较高压力的氢气对A塔进行四均升。
☆ 步序10:三均升压(E3R)在四均升压过程完成后,打开程控阀XV4704A和XV4704D,再将D塔内较高压力的氢气回收进刚完成了四均升的A塔,进行三均升。☆ 步序11:二均升压(E2R)在三均升压过程完成后,打开程控阀XV4704A和XV4704E,利用E塔二均降时较高压力的氢气对A塔进行二均升。☆ 步序12:一均升压(E1R)在二均升压过程完成后,打开程控阀XV4703A和XV4703F,再将F塔内更高压力的氢气回收进刚完成了二均升的A塔。
☆ 步序13:产品气升压过程(FR)通过四次均压升压过程后,吸附塔压力仍然未达到吸附压力。这时打开程控阀XV4703A、XV4709,通过调节阀PV4708用产品氢气对A塔进行缓慢升压,直至A塔压力升至吸附压力为止。
经过上述一系列这降压及升压过程后,吸附塔便完成了整个再生过程,为下一次吸附做好了准备并由此进入下一吸附循环。
吸附塔T4101B~H的工艺步序与T4101A都是完全相同的,只是在各步序的运行时间上依次错开1/2个吸附时间,这样就实现了始终有2塔处于吸附状态,7塔分别处于不同的再生状态,保证了原料气的连续分离与提纯。
对于操作而言,特别要记住的是每一个程控阀门的功能,和吸附塔的工作顺序,只有这样才能在装置故障时迅速判断出故障的位置。
d切塔后的参数与工艺步序
由于PSA氢提纯装置是由8台吸附塔组成。因而为提高装置的可靠性,本装置还编制了一套“自动/手动”切塔与恢复程序。即:当某一台吸附塔出现故障时,可将其脱出工作线,让剩余的7个吸附塔转入7-1-3方式工作,如果再有吸附塔出现故障则可继续切除,转入6-1-
2、5-1-
2、4-1-2流程。但这时,装置产品纯度和产氢量等指标仍可以维持原指标不变,只是原料消耗有所增加。
第三篇:化学制氢的发展现状及其制氢工艺
镍基催化剂的制备及其ABE制氢活性的研究
综述部分
引言 :化学制氢的发展现状及其制氢工艺 随着经济的迅猛发展和地球人口数量的剧增,资源与环境问题成为阻碍人们长期可持续发展的重要因素,在过去的几十年,人们以牺牲煤石油等化石燃料来发展经济,能源数量的短缺和环境压力已经扼住人类生存与发展的咽喉,寻找一种可以代替传统能源的清洁能源已经成为燃眉之急。然而氢能源反应时能放出极高的热量。污染小。反应又速度快,人们广泛认可这种能源。因为它可通过多种反应制得的优良性能。因为H2的热值为1400000Kj/kg,氢气燃烧室放出的热量远远高于核能。氢能源不仅能实现污染物的零排放,也能不排放实现温室气体。燃烧后生成水的可以用来一循环制造氢气。而且氢气的运输和储存方式也是极为方便。可以以气态方式运输储存,也可以转化为固态液态的形式储存。近年来氢能的利用也得到了重大的突破,因为燃料电池技术应用,氢能源的开发变得流行起来。
一. 化学制氢的发展现状
1制氢方式
1.1氢能源的制取方式通常有化石燃料制氢,甲醇蒸汽转化制氢,光催化分解水制氢,电解水制氢,生物制氢[1]等。在化学制氢,电解水制氢,生物制氢等多种方式中,最近些年制氢的主要方式还是化学制氢。其中,催化重整制氢是很多制氢技术中的主要方式。
1.天然气或轻油也可以作为制氢的原料,因为它们经过高温重整或部分氧化重整,原料中的烃类可以生成氢气二氧化碳和一氧化碳等。催化重整制氢经过你很长时间的发展,技术上相对成熟。蒸汽重整,部分氧化和催化部分氧化重整是比较常用的技术,也包括自热重整和等离子体重整等。其中蒸汽重整法所制取的氢气含量高,在众多重整制氢中被广泛应用
1.3甲醇和蒸馏水可以进行蒸汽转化制氢。其原理如下:
总反应: CH3OH+H2O=CO2+3H2 +49.5 KJ/mol,主反应 CH3OH=CO+2H2 +90.7 KJ/mol,CO+H2O=CO2+H2-41.2 KJ/mol,副反应: 2CH3OH=CH3OCH3+H2O-24.9 KJ/mol,CO+3H2=CH4+H2O-+206.3KJ/mol。这种方法工艺上操作较为简单,技术发展也较好。在220~280℃下专用催化剂上催化转化为组成为主要含氢和二氧化碳转化气,可以生产出纯度非常高的氢气。和电解蒸馏水相比相其价格较为便宜,甲醇重整制氢操作门槛较低,容易实现。据推算一套规模为1000Nm3/h的甲醇蒸汽转化制氢装置的单位氢气成本不高于2元/Nm3H2而电解水制氢约4~6元/Nm3H2[2]。甲醇作为化工生产的基本原料产量大,与大规模的天然气轻油蒸汽转化制氢相比投资小能耗低。
1.4光催化分解水制氢是在1972年有日本东京大学Fujishima A和Honda K两位教授首次提出的。为利用太阳能光解水制取氢气的研究指明了方向,因为TiO2单晶电极光可以催化分解水生成氢气,所以不利用太阳光分解蒸馏水制氢是可能的。有关光催化分解水制氢的研究主要集中在以下几个方面1通过改进传统的可见光催化剂的改性以达到使用可见光的目的2寻找和研发新型的高效可见光催化剂3对光催化产氢的反应机理进行深入的研究,特别是考察光生载流子的转移动力学4研究光催化剂的结构与产氢效率之间的构效关系5光催化产氢器件或设备的研发[3]等,对于基础研究,研究高效催化剂是最为重要的。
1.5电解水制氢利用水的解生成H2和O2 电解水制氢的原理较为简单,首先在电解槽中加入电解质溶液,然后通入一定电流,电流从两极间流过,氢气在阴极产生,氧气在阳极放出。阴极的析氢材料的选择很重要,铂系的析氢过电位很低,作为早器的阴极析氢材料。不过价格昂贵,因此开发具有低吸氢过电位而且价格低廉的合金材料有重要意义北京理工的庞志成[4]等认为镍及其合金在碱性电解水制氢有高的电催化活性,当镍金属和其他过渡金属形成合金时,晶体结构有更好的修饰或改变。CoO3O4氧化物作为阴极析氢材料,AB2O4型尖晶石型氧化物,ABO3钙钛矿型氧化物作为阴极析氢材料,近年来人们广泛关注镍材料作为碱性电解水阴极。
1.6生物制氢
利用生物吱声的代谢作用可以将有机物质或水转化为氢气。光解水制氢,厌氧细菌制氢和光合细菌制氢等类型属于生物制氢。产氢生物一般分为发酵型放氢微生物和光合型微生物。
因为氢酶和固氮酶可以催化放氢反应。生物质制氢一般有两种途径,一种是领生物质的衍生物,如生物的粪便发酵产生的沼气,秸秆等生成的甲醇等间接制氢。另一种是将生物质进行热气化或热解制氢。
二.氢能源的利用
2.1氢能源的工业应用:液态氢在宇航事业应用较为广泛,因为液氢是良好的火箭发动机燃料。液氢作为火箭发动机燃料的优点是不仅燃烧热值高,而且分子量低,液氢液氧火箭发动机的研制是航天技术发展的里程碑。高超音速飞机有些人开发利用液氢为燃料的,因为液氢的密度小,而且排放废气少,燃烧噪音较小。
2.2在汽车行业,将氢气降温增大压力后使用。液态氢密度小质量轻,热值大,便于携带和运输,可以将其用于机动车辆。氢气在汽车领域的应用主要在燃料电池发动机。也可以用在氢燃料发动机上,氢气是气体燃料,用在发动机上会减小气动力性能,但是提高压缩比会改善这样的性能。利用氢能源的氢燃料发动机和燃料电池发动机不会对发动机产生污染,如积炭凝胶等现象。由于汽车的引擎可以被润滑油碳颗粒等污染,所以此类方法非常有利。氢燃料燃烧时的火焰温度高,火焰延伸迅速,不过需要解决引擎的早燃回火敲缸等问题。近年来,氢燃料电池在汽车应用较为广泛。
2.3在化工产业中氢气主要应用在有机化工中。生产甲醇和工业合成氨等化工产品一般原材料都是H2。在粗苯加氢和生产苯胺过氧化氢时候也需要加氢。原油中有些不饱和烃,在加氢过程也需要氢气。
由于它的还原型,它能将金属从氧化态还原成零价态,所以它在冶金方面有重要应用。它可以作为保护气应用在金属加工方。特种钢的冶炼,太阳能电池的生产,半导体和大规模集成电路的生产;光导纤维的生产燃料工业等广泛利用到氢能源。电子行业食品行业的生产也需要氢气。
三醇类重整制氢反应原理及其影响因素
1醇类重整制氢的反应原理
醇类重整制氢主要集中于甲醇与乙醇等方面的研究。
乙醇重整制氢的反应过程较为复杂,可能发生的反应也十分多一般认为可能发生如下反: 1是脱氢反应:乙醇脱氢生成CH3CHO和H2。CH3CHO又会分解成CH4和CO2。部分乙醛裂解成甲烷和一氧化碳。副反应有一氧化碳的水煤气反应生成CO2和H2,CH4也可以进行水蒸气重整反应生成H2,同时生成一氧化碳,二氧化碳等。
2是脱水反应:氢气和C2H4在脱水过程中会生成。一部分乙烯继续发生重整反应,CO和H2等会生成;在产物中会生成。CO发生水煤气变换反应生成CO2和H2等。在反应过程中加入催化剂,会影响整个过程反应的调价和原理。化学反应体系中的金属原子一般决定反应活性,加入不同的载体,反应活性中心也可能不相同。比如在反应中加酸性催化,乙烯很容易生成这对反应是不利的。在乙醇重整制氢反应过程中,乙烯的聚合生成碳单质,残留的乙烯聚合是造成积炭的重要原因。所以在高温的条件下,为了使乙烯的选择性降低就要研究性能较高的的催化剂。在低的水碳比时
C2H5OH+H2O----2CO+4H2,在高的水碳比时,C2H5OH+3H2O----2CO2+6H2,脱水反应C2H5OH-----C2H4+H2O,脱氢反应C2H5OH----C2H4O+H2,聚合反应C2H4---积炭,裂解反应:C2H5OH----CH4+CO+H2, 乙醛的重整反应:C2H4O+H2O-----3H2+2CO,乙醛的裂解C2H4O-----CH4+CO,甲烷化:CO+3H2------CH4+H2O,水汽转化反应CO+H2O----CO2+H2 从反应的最终结果来看,乙醇重整反应是一个从C2化合物到C1化合物的转化过程,有利于C—C键断裂的催化剂对反应活性较好,他是一个在C原子上加氧脱氢,从水分子上脱氧脱氢的过程[5],催化剂因该有利于C-H键和H2O分子的活化。反应的条件和催化剂的性能会影响该反应的条件,而且应该压缩副产物生成和把催化剂的抗积炭性能提高。3乙醇重整制氢的热力学研究
乙醇水蒸气重整的反应方程式C2H5OH+3H2O-----2CO2+6H2
H=+174.2kJ/mol
C2H5OH+H2O-----2CO+4H2
H=+256.8KJ/mol 乙醇直接裂解制氢反应C2H5OH-----CH3CHO+H2
H=68.44kJ/mol
CH3CHO------CH4+CO
H=-18.78kJ/mol
C2H5OH+2H2-----2CH4+H2O H=-155.23kJ/mol
副反应C2H5OH---CH4+H2CO---CO+CH4+H2 H=499.66kJ/mol
C2H5OH----1/2CO2+3/2CH4
H=-73.85kJ/mol
C2H5OH----1/2CH3COCH3+1/2CO+3/2H2 H=50.41kJ/mol 乙醇部分氧化重整C2H5OH+1/2O2----2CO+3H2 H=14.1kJ/mol
C2H5OH+3/2O2---2CO2+3H2
H=-552.0kJ/mol
在乙醇重整的热力学中,由以上反应方程式可以看出乙醇的水蒸气重整是个很的强吸热的过程。水醇比和温度条件对产物氢气和其他组分的比例影响较大,当水醇比减小时乙醇的吸热效率也会相应的减小。但是高温有利于产物中主产物的生成,当水醇比减小时,积炭会增加。乙醇的水蒸气重整反应速率较快,而控制好反应产物的分布条件,和提高乙醇水蒸气重整制氢的反应物的转化率和减少副产物的生成一般要控制好热力学条件。所以控制好化学反应的热力学条件和减少积炭的生成在乙醇重整制氢中具有重要的意义。
重整反应的化学反应焓变表明,乙醇的部分氧化重整是强烈的放热反应。当反应体系中的氧醇比增大时,乙醇在反应过程中会增加放热量,当氧醇比继续增大到一定程度时,乙醇的反应会变成完全燃烧。氢气的产量一般随着氧醇比的降低和温度的升高而增多。而且当氧醇比过大时,极易产生积炭,一般控制重整的氧醇比在一定范围
因为乙醇自热重整吸热量和放热量很少,总体上放热可以忽略,所以乙醇的自热重整是个相对热平衡的过程。其中氢气产率随着温度的上升而上升,水醇比的增加和氧醇比的降低而增加,系统的能量效率受到水醇比的影响,而氧醇比对能量效率的影响不大,乙醇自热重整的积炭量较少
热力学研究表名,对于乙醇直接裂解,乙醇水蒸气重整反应,乙醇部分氧化反应和乙醇二氧化碳重整反应温度升高有利于H2和CO的生成,不利于CH4和固态C的生成。
三镍基催化剂的制备方法
浸渍法
浸渍法操作简便,成为一种应用较为广泛的制备方法,浸渍法是将载体放进含有活性物质的气体或液体中浸渍,活性物质组建吸附于载体表面,当浸渍平衡后,将多余的液体除去,在进行干燥焙烧活化等即可制得催化剂。这类催化剂常被称为负载型催化剂
浸渍法通产包括载体预处理,浸渍液配置,浸渍,出去过两液体,干燥焙烧,活化等过程,浸渍法适用于制备稀有贵金属催化剂,活性组分含量较低的催化剂,以及需要高机械强度的催化剂,浸渍法制取催化剂的有点是具有已经确定的载体形状,载体具有合适的比表面孔径强度导热率,活性组分利用率高成本低,生产方法也较为简单,缺点是焙烧过程会产生污染气体,干燥过程会导致活性组分迁移 共沉淀法
在金属盐溶液中加入沉淀剂,生成难容金属盐或金属水合氧化物,从溶液中沉淀出来,再经老化过滤洗涤干燥焙烧成型活化工序制得催化剂或催化剂载体,它广泛应用于制备高含量的非贵金属,金属或非金属氧化物催化剂或载体。共沉淀法制备水滑石结构:,按照一定的比例,将金属硝酸盐溶液配成一定浓度的混合盐溶液(SolS),将NaOH和Na2CO3按照一定比例的配成混合碱溶液(SolB),在大烧杯中预先装入一定量的蒸馏水,加热至一定的温度,将SolS和SolB按一定的滴速同时滴入大烧杯中,维持反应体系的pH为一恒定值,剧烈搅拌。滴定完毕后,继续搅拌陈化,最后经过滤、洗涤、烘干,得产物。此合成方法是水滑石合成中的一种常用方法,沉淀剂的加入可能会使局部浓度过高,产生团聚或组成不够均匀。水热合成法
是指在特制的密闭反应器或高压釜中,采用水溶液作为反应体系,通过对反应体系加热加压(或自生蒸汽压),创造一个相对高温高压的反应环境,使得通常难容或不容的物质溶解,并且重结晶而进行无机合成与材料处理的一种有效方法。所的产物纯度高,分散性好、粒度易控制。可以使原料细化和均匀混合,且具有工艺简单、煅烧温度低和时间短、产品性能良好等优点。水热合成法制备水滑石结构,是先将SolS和SolB缓慢滴加在一起活着快速混合,然后将得到的浆状液立即转移至高压釜中,在一定的温度下(通常是100°C)陈化较长时间,最后经过过滤、洗涤、干燥、研磨得产品。此法特点是使水滑石的成核和晶化过程隔离开,并通过提高陈化温度和压力来促进晶化过程。水热合成法由于反应发生在密闭的系统中,因而没有其他杂质被引入。制备所得纳米金属氧化物具有粉末细(纳米级)、纯度高、分散性好、颗粒均匀、晶粒发育完整、形状可控等优异特性。另外水热法还能够避免高温下反应物的挥发、应力诱导缺陷、物相相互反应等缺点,更重要的是水热法通过调整反应条件可控制生成物的形貌、大小、粘度分布等
四醇类制氢催化剂研究
活性组分:有关乙醇蒸气重整制氢的研究主要集中在负载型镍基钴基铜基和贵金属催化剂的研究上
镍基催化剂是一种高性能的加氢脱氢催化剂,金属镍对促进C—C键的断裂具有高的催化活性,Ni基催化剂对乙醇水蒸气重整制氢反应普遍具有较高的活性,乙醇转化率和H2产率都比较高,反应温度较低,而且价格低廉,是良好的燃料电池用催化剂。Ni也能增加气态产物的含量,降低乙醛乙酸等产物的产量以提高其对氢气的选择性。而且,镍金属与其他贵金属相比,价格低廉,具有较量好的低温活性,在乙醇制氢有良好的活性。但是Ni会促进乙醇重整过程中CO和CO2与H2之间的甲烷化反应,降低氢气选择性;金属镍容易促进甲烷裂解从而产生积炭容易导致催化剂失活;Ni基催化剂的烧结也是需要解决的重要问题,可以通过选定合适的载体来提高镍基催化剂的还原度和炕烧结性能 Co基催化剂
Co基催化剂在乙醇脱氢断链反应中,具有良好的催化性能。近些年CuZnNi催化剂 CuO-La2O3/ZrO2/催化剂等对乙醇重整反应具有良好的活性和选择性Llorca等研究了Co担载在不同载体上的催化剂,发现了Co能促进催化剂的催化性能,Co/ZnO催化剂表现出了最好活性。近年来,Co/Al2O3,Co/Mgo ,Co/SiO2,Co/CeO2,Co/La2O3等受到广泛研究。但如何添加些助剂来改变活性组分与载体的相互作用降低其催化温度,提高其低温度下的催化活性 并提高其稳定性是今后研究的重要方向。Cu系催化剂
Cu系催化剂广泛用于甲醇催化制氢反应,在过去,Cu作为乙醇蒸汽重整制氢的催化剂也有研究,Cu能促进C---H键O----H键的断裂,而低的Cu的担载量有利于提高Cu的分散度,但Cu作催化剂易产生积炭,积炭也是由于中间产物乙烯造成的,所以如何降低中间产物的含碳量,开发抗积炭性能的Cu催化剂是今后研究的重点 贵金属催化剂
贵金属催化剂具有很高的活性和选择性,Rh Ru Pt Pd等贵金属在乙醇制氢中有广泛的应用,并被广泛研究。贵金属Rh在乙醇重整制氢过程中表现出较好的活性和选择性,随着Ru负载量的增加,催化活性能得到明显的提高。对于Ru和Rh,Al2O3,CeO2-ZrO2作为载体都能成为性能良好的乙醇重整制氢催化剂。Pt Pd Au等在乙醇重整过程中表现活性较差。而且,贵金属价格一般非常昂贵,而且贵金属催化剂的催化温度一般较高,在低温反应的燃料电池方面不太实用,所以,降低催化温度和提高金属颗粒的分散度是贵金属催化剂的重要研究方向,而且贵金属一般有较好的催化活性和选择性,但是稳定性相对较差,有待进一步研究以提高
载体
镍基催化剂可以以考虑选用不同的载体,常用的有MgO TiO2 AL2O3 La2O3 但不同载体对催化剂的催化活性催化剂的选择性有影响。杨宇[6]等对载体对镍催化剂催化乙醇重整制氢的研究表明:在650摄氏度101.3kpa下,不同载体载催化剂选择性有差异,ZnO=La2O3>CeO2>MgO>r-Al2O3>TiO2>ZrO2>硅胶>硅藻土,各载体负载催化剂主要物象包括NiO而Ni与载体的相互作用影响催化剂选择性当相互作用较弱时,催化剂选择性低,不存在NiO时,催化剂火星选择性都低,当相互作用较强,催化剂活性和选择性较高 在乙醇重整制氢方面MgO,La2o3,Al2O3,CeO2-ZrO2等用于催化剂载体 类水滑石结构的催化剂
水滑石是Mg和Al的羟基碳酸化合物,类水滑石化合物是一种层状的特殊结构的材料,这种结构有金属氢氧化物层,层间有平衡阴离子。类水滑石化合物层板上具有规整结构的金属离子,当以它为前驱体的复合氧化物在焙烧后,会有良好的分散性,和同类催化剂相比,它能使金属分布更均匀,更重要的是稳定的氧化镁构型能更好的抵抗烧结,类水滑石在作为催化剂的前驱体得到高度的重视。人们利用其他的金属离子取代水滑石层板的镁铝粒子,合成了类水滑石结构。Ni-Mg-Al三元的类水滑石结构作为催化剂的前驱体,经过焙烧后的复合氧化物催化剂,具有良好的催化性能。一般采用恒定的PH法制备类水滑石结构催化剂更有利于提高晶面生长的有序程度,适当的延长晶化时间也有利于晶粒的增加。晶化温度一般对晶体结构的完整性有所影响。原料配比的变化会影响类水滑石结构晶体结构的规整性和层间距等。
五研究目的及要解决的问题
工作重点是研究开发出高活性高稳定性高选择性的催化剂。研究丙酮,乙醇,甲醇混合制氢的最佳反应条件以及镍基催化剂的表征,通过不同的反应条件和不同催化剂的ABE重整制氢反应,来确定镍基催化剂的最佳催化条件和产物氢气在该条件下能达到的最佳产率。通过对镍基催化剂的改性,在保证氢气产率的条件下,提高镍基催化剂氢气的选择性,减小催化剂的积炭对反应活性的影响,具体研究内容主要包括以下几个方面
1乙醇的重整原理实质是C----C键断裂,并在C原子上脱氢加氧的过程,催化剂的催化温度很重要,要求催化的活性组分能在较低温度下将C—C键断裂,并能将副产物中的CH4重整成氢气,并促进水汽转换反应。
2Ni基催化剂在过去的乙醇重整制氢表现良好的催化性能,Al2O3,MgO,MgO等担载的催化剂表现出高的活性和稳定性,活性金属的分散度较大,氢气的选择性较好,这是由于载体与金属之间的相互作用造成的,但Ni基催化剂的缺点是容易产生积炭和烧结,如何降低副产物乙烯的选择性是减少积炭的关键。本课题以乙醇重整制氢为反应目标,以镍基催化剂的反应性能入手,探究随着催化剂和反应条件的变化,反应物的转化率和H2产率的变化规律,并通过XRD,TPR,XPS,等手段对对催化剂的结构进行分析,揭示反应规律的内在原因
六课题的研究思路
1利用共沉淀法制备不同载体担载,利用恒定PH法制备类水滑石结构的催化剂,Ni-Mg-Al三元的类水滑石结构作为催化剂的前驱体,结晶时间在24h,并在750摄氏度下焙烧。制备不同Ni-Mg-Al-Fe配比的镍基催化剂。
2利用催化剂评价装置对乙醇丁醇重整制氢进行反应活性评价,考察不同载体担载的Ni基催化剂的乙醇丁醇混合重整制氢的反应性能,并考察烧结和积炭情况 3通过TPR XRD等手段对催化剂的进行表征,对催化剂的结构,反应的稳定性进行探讨。
参考文献
[1] 孙欣.氢能源的发展现状及展望[J].技术与市场, 2012(04):261.[2] 郝树仁, 李言浩, 程玉春, 等.甲醇蒸汽转化制氢技术[J].精细化工, 1998(05):54-56.[3] 李秋叶, 吕功煊.光催化分解水制氢研究新进展[J].分子催化, 2007(06):590-598.[4] 庞志成, 罗震宁.碱性电解水制氢镍合金阴极材料的研究进展[J].能源技术, 2004(01):19-21.[5] 张保才.生物质乙醇水蒸气重整制氢反应的研究[D].中国科学院研究生院(大连化学物理研究所), 2006.[6] 杨宇, 吴绯, 马建新.载体对镍催化剂催化乙醇水蒸气重整制氢反应性能的影响[J].催化学报, 2005(02):131-137.学号:201002020204
王欢
第四篇:化工工艺
二甲醚的生产方法最早是由高压甲醇生产中的副产品精馏后制得,随着低压合成甲醇技术的广泛应用,副反应大大减少,二甲醚的工业生产技术很快发展到甲醇脱水或合成气直接合成工艺。甲醇脱水法包括液相甲醇法和气相甲醇法,前者的反应在液相中进行,甲醇经浓硫酸脱水而制得,但因该法存在装置规模小、设备易腐蚀、环境污染、操作条件恶劣等问题,逐步被淘汰。近年来,二甲醚的需求量增长较大,各国又相继开发投资省、操作条件好、无污染的新工艺,主要包括二步法和一步法。二步法先由合成气制取甲醇,然后将甲醇在催化剂下脱水制取二甲醚。以前主要采用硫酸作催化剂,现在大多采用由γ-Al2O3/SiO2制成的ZSM-5分子筛作催化剂,性能优良,选择性好,故能制备出高纯的二甲醚,还能避免污染。
一步法由合成气直接制取二甲醚,包括合成气进入反应器内同时完成甲醇合成与甲醇脱水两个反应和水-煤气变换反应,产物为甲醇与二甲醚的混合物,混合物经蒸馏分离得二甲醚,未反应的甲醇返回反应器。一步法多采用双功能催化剂,一般由两类催化剂混合而成,其中一类为合成甲醇催化剂,另一类为甲醇脱水催化剂。合成甲醇催化剂包括Cu-Zn-Al(O)基催化剂,如BASF、S3-85和I-CI-512等。甲醇脱水催化剂有氧化铝、多孔SiO2-Al2O3、Y型分子筛、ZSM-5分子筛、丝光沸石等。一步法根据反应器类型分为固定床和浆态床两种。
一步法制二甲醚的反应可分为以下几步:
CO+H2—>CH3OH-ΔH=90.7kJ/mol(1)
2CH3OH—>CH3OCH3+H2O-ΔH=23.5kJ/mol(2)
CO+H2O—>CO2+H2-ΔH=41.2kJ/mol(3)
总反应式:3CO+3H2—>CH3OCH3+CO2-ΔH=246.1kJ/mol(4)
一步法与二步法相比较,各有优势。一步法中CO的转化率远高于二步法,但在一步法中,由于三个反应必须同时发生,且三个反应均为放热反应,这就要求所用的催化剂有很好的耐热性,在高温下具有高选择性,反应器要求更高。一步法生产的二甲醚一般用作醇醚燃料,若想生产高纯度,还需进一步分离提纯。二步法的转化率虽然不如一步法高,但是它具有生产工艺成熟,装置适应性广,后处理简单等特点,既可直接建在甲醇生产厂,也可建在其它公用设施好的非甲醇生产厂,如合成氨厂。与一步法相比,二步法合成流程稍长,但两类催化剂装在不同反应器,互不干扰。
根据反应过程的相态和工艺特点来分,合成气一步法制二甲醚工艺主要有两相法和三相法之分。两相法又称气相法(GPDME),三相法又称液相法(LPDME)。气相法主要在固定床反应器中进行,合成气在固体催化剂表面进行反应,如果使用富碳合成气,则催化剂表面会很快结炭而失活,因此气相法只能使用富氢合成气(H2/CO远大于2),并在低转化率情况下操作(未反应的合成气大量循环)。气相法主要技术工艺有丹麦托普索公司的TIGAS法和日本三菱重工业公司与COSMO石油公司联合开发的ASMTG法。液相法主要在浆态反应器中进行,CO、H2和二甲醚为气相,惰性溶剂为液相,悬浮于溶剂中的催化剂细粉为固相。由于液相的热容大,因此液相法很容易实现恒温操作,而且催化剂颗粒表面为溶剂所包围,结炭现象大为缓解,因此可使用富碳合成气为原料。
这个一般分为汽化,净化,合成,精馏四个步骤:
用天然气一般用转化法(二段)教好!用天然气和氧气水蒸气生成CO和H2!然后将生成的气体经过净化(变换,脱硫,脱碳),然后调整其压力进合成塔,出来后冷却,然后在经过醇分进精馏塔提纯
第五篇:化工工艺
绪论
1、无机化工
基本无机化工:三酸、两碱、合成氨、化学肥料 精细无机化工:各种试剂、药剂、日化品、稀有元素等 电化学工业:氯碱工业、湿法电冶金、电石生产等 硅酸盐工业:玻璃、陶瓷、水泥、耐火材料等 矿物涂料和颜料等
2、有机化工
基本有机化工 三烯三苯一炔一萘;甲醇、甲醛、乙烯系、丙烯系和芳香烃产品等 精细有机化工 各种试剂、药剂、香料和杀虫剂、染料工业和各种中间体(医药、农药、颜料)等
高分子化学工业 三大合成、成膜材料等的生产 燃料化学工业 石油、天然气、煤的化学加工等 食品工业 糖、油脂、饮料、生化产品等 其它 造纸、制革、橡胶等的加工
3、化学工业的特点
1)在国民经济中占有重要地位 2)品种多 原料广 工艺路线多 3)装置大型化 具有规模经济性 4)综合利用率高 有联产品和副产品 5)先进科学技术化程度高,生产效率高(催化剂,高温高压,反应速度快,材料,三废)
化学工业 :“利用化学反应改变物质结构、成分、形态等生产化学产品的工业部门。习惯上分为无机化学工业有机化学工业两类。------1999年版《辞海》
化学工业 :利用化学反应和化学工程的方法,改变物质结构、成分、形态而生产化学产品的工业部门。
工艺:“利用生产工具对各种原材料、半成品进行加工或处理,使之成为产品的方法”。工艺学:“根据技术上先进,经济上合理的原则,研究各种原材料、半成品、成品的加工方法和过程的学科称为工艺学”。----1999年版《辞海》
化学工艺学:“亦称工业化学。根据化学、物理和其它科学的成就,研究综合利用各种原料,加工成为产品的方法、原理、流程和设备,以寻求在技术上最先进、经济上最合理的生产途径的学科。
化工工艺学:就是研究运用各种学科的知识,经济地、先进地将各种原材料生产出化工产品的技术、过程和方法,是化工产品生产的工程技术、诀窍和艺术。
化工工艺学研究的主要内容包括三个方面:
•(1)生产的工艺流程;
•(2)生产的工艺操作控制条件和技术管理控制; •(3)安全和环境保护措施。
任何一个复杂的化工产品生产过程,我们把它从工艺学上分为三个部分,第一部分是工艺流程,第二部分是工艺操作参数,第三部分是三废治理。这三个部分是既相对独立,又互相依存,互相联系的。
研究一个生产过程的方法----分板块
• 板块的核心:
“反应过程”
• 第二个板块:
“原料”
• 第三个板块:
“分离”
• 第四个板块:
“产品后加工”
• 第五个板块:
“三废治理”
第一章
化工工艺学概论
古代:陶瓷、冶金、造酒近代:
(1)棉纺织行业(2)纯碱工业
路布兰制碱法
苏尔维法(3)硫酸工业 :“铅室法”、接触法
(4)电解食盐水工业(氯碱工业)(5)煤及焦油利用和有机合成工业(6)染料:苯胺染料
(7)涂料:涂料的组成一般是由颜料、成膜物质和溶剂助剂组成。
(8)医药
现代:(1)纯碱工业
① 1937年
德国
“蔡安法” ②
1943年
“侯氏制碱法”
(2)硫酸工业:二战后
德国拜耳
二次接触法(3)氯碱工业: 1975年
离子交换膜法(4)染料工业
(5)涂料工业(6)医药工业
• 磺胺类药物直到20世纪中叶,仍然十分兴盛
• 1928年发现了青霉素之后,在40年代用于临床
• 20世纪50年代开始,激素逐步被认识。
• 20世纪70年代之后,抗癌药物的研究成了热门话题
(7)合成氨和化肥工业(8)农药工业
(9)合成树脂与塑料工业
四大通用塑料聚氯乙烯(PVC)、聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)(10)合成橡胶工业
苏联列别捷夫生产丁钠橡胶这是人类使用的第一代通用橡胶;第二代主要是丁苯橡胶。聚异戊二烯橡胶是人类使用的第三代橡胶。第四代橡胶:“热塑弹性体”:是一些已知的单体和聚合物,用嵌段、接枝的方法,或用拼混和互穿网络结构的方式,使高分子的硬段和软段互相交替组合。
(11)合成纤维工业 • 1950年英、美、日、德等国推出了醋酸纤维。
• 碳纤维
(12)基本有机原料工业
• 乙炔化学 • 煤焦油化学
• 石油化学----乙烯化学 • 一碳化学----CO化学
(13)煤化工:煤化工的发展是煤的气化和液化。
化学工业的行业特征
•(1)发展和更新速度快
•(2)设备特殊,设备投资高、更新快
•(3)知识技术密集,投资和资金密集
•(4)能量消耗密集和物质消耗密集
•(5)有一定的规模效益
•(6)要求环境保护和防治,要求自动控制条件比较严格
•(7)化工的市场竞争激烈,国际竞争也十分激烈
•(8)市场经营注意用户开发和用户技术指导
化学工业的分类
•(1)按化学工业使用的原料来划分则有
煤化工、石油化工、天然气化工、海洋化工、矿产化工、生物化工、林产化工、天然药品和天然产物化工、核化工(放射化工)、电化工
•(2)按产品的用途和产品形态等,又分为
国防化工、环境化工、食品化工、日用化工、农用化工、能源化工、信息化工、材料化工、皮革化工、冶金化工、药物化工、硅酸盐化工、建筑化工
•(3)按产品归大类,又分为
无机化工、有机化、高分子材料化工、精细化工
化工新技术开发概述
化工新技术(产品)从研究到产业化的机会只有1%~3%;从开发到产业化的机会只有10%~25%;从中间试验到产业化的机会也只有40%~60%。
化工新技术开发的目的就是开发出技术先进、数据完整、实用可靠、有效益、有竞争力的单项授习喊成套技术的成果,根本目的是创造财富,创造更大的经济效益,是探索实现工业化或半工业化。
工艺的先进性是重要的研究重点,而工程研究则占主导地位
化工技术开发研究的方法和程序
1. 逐级经验放大法:工艺小试一中间试验一工程设计
化工工艺设计的内容
•(1)研究产品的反应特点和反应工艺、设计反应过程,这是生产的关键。•(2)设计工艺流程,这是全部工作的灵魂和核心。
•(3)工艺流程的落实,包括工艺流程中设备的选型和工艺设计、仪表的设置、管道管件阀门的选择设计和排布设置等。这是整个工艺设计的重点和要害,这部分工作做不好等于纸上谈兵。
•(4)车间和工艺设备的布置,这是工艺设计富有想像力的部分。
•(5)协调为工艺和操作服务的“公用工程”和全部设计中“非工艺专业”的设计,提供工艺条件,这是工艺设计中协作的成果;
•(6)制定三废治理的措施和三废治理的工艺设计。
•(7)编制设计文件,这是工艺设计成果的汇总。
作为工艺设计的总的原则是:技术先进、设计合理、生产安全、经济有效、注意环境、为国为民。
第二章
原料及原料准备
原料路线选择的原则以先进、合理、安全、经济为综合指标,加以认真评估。
原料预处理的原则
(1)必须满足工艺要求。
(2)简便可靠的预处理工艺。
(3)充分利用反应和分离过程的余热及能量。•
(4)尽量不要产生新的污染,不要造成损失。•
(5)尽量研究和采用先进技术。•
(6)投资节省,设备维护简便。•
(7)尽量分工由生产厂家精制。第三章
反应过程和过程优化
反应过程的分类
1.按化学反应的特性分类
按照反应机理的不同,简单反应、复杂反应 2.按反应过程进行的条件分类
.
按照过程的温度条件:等温过程、绝热过程和非绝热变温过程。3.就压力状况:常压、负压和加压过程。
4.根据操作方式的不同:间歇过程、连续过程和半连续过程。
反应器选型原则
• 1)反应类型与特征 • 2)反应过程的特征和要求
• 3)由反应的浓度效应决定的混合要求
• 4)由反应的热负荷和温度效应所决定的热量传递和温度控制要求 • 5)相际传质和化学反应的相对速度 • 6)最后再判断反应器的特征能否达到要求
一个最优化问题或称最优化模型应该包括这样一些内容: •
①要有一个能正确描述反应器特性的数学模型。
②必须给出数学模型的初始状态的值。•
③必须给出规定的终止状态。
④必须规定一个性能指标,即确定切实可行的比较准则或称之为目标函数,并且要建立目标函数与操作参数之问的函数关系。•
⑤状态变量和控制变量要加上约束条件。
建立反应器的最优化方案
①反应器的分析和模拟。②有关事故分析和核对过程模型的有效性。③研究反应器的动态特性以及实现在线开环最优化。④把在线开环最优化过渡到闭环最优化。
在化工中最常用的最优化方法有:微分法、变分法、拉格朗日因子法、线性规划法、动态规划法、最大值原理法和梯度法等。
水煤气的生产方法 吹风阶段:吹入空气,提高燃料层温度,吹风气放空,1200 ℃结束。
蒸汽吹净:置换炉内和出口管中的吹风气,以保证水煤气质量。
一次上吹制气:燃料层下部温度下降,上部升高。
下吹制气:使燃料层温度均衡
二次上吹制气:将炉底部下吹煤气排净,为吸入空气做准备。
空气吹净:此部分吹风气可以回收。
化学反应器是化工生产的核心设备,满足下列要求:
(1)反应器要有足够的反应体积,以保证反应物在反应器中有充分的反应时间,达到设定的转化率和产品质量指标:
(2)反应器的结构要保证反应物之间,反应物与催化剂之间的良好接触。•
(3)反应器要保证及时有效地输入或引出热量,以使反应过程在最适宜的操作温度T进行。
(4)反应器要有足够的机械强度和耐腐蚀能力,以保证反应过程安全可靠,经济耐用.
(5)反应器要尽量做到易操作、易控制、易制造、易安装、易维护检修。
第六章三废治理
1.在进行工艺设计和工程设计时,要把三废治理作为重要环节,做到“三同时”,即同三废治理原则
时设计、同时施工、同时投产。
2.治理三废的积极的思路就是改造工艺,使其不产生无法治理或难以治理的三废。“三废”资源化,回收利用或生产出新的产品(过去称综合利用产品),万不得已则使之无害化。
固体废弃物的处理原则
(1)改革生产工艺,减少原材料的流失量和固体废物的排放量。(2)回收固体废物中的有用物质,并利用废物来制造副产品。
(3)对回收利用的废渣,进行就近处理,使之无害化后,选择山坡荒地堆积或填充矿井,覆土造田。
第七章检测和操作控制
①除了严格科学的工艺操作规程外,还应有安全规程及安全教育。②配备必须的防护用品。安全措施 ③易燃车间配套相关灭火器械,设备有防爆膜孔。④电气设备有严格接地装置。⑤厂房及高大设备必要时有防雷设施。
⑥厂房有完备的通风设施。
⑦易爆车间配防爆电气,照明及开关。
⑧危险岗位尽可能加强自动控制,减少人员接触。
⑨车间危险区域设置护栏及警示标志。
⑩清除静电的设施,包括人体防静电措施。
乙烯氧氯化法生产氯乙烯
乙烯液相氯化生产二氯乙烷工艺流程图
1-氯化塔;2-循环冷却器;3-催化剂溶解槽;4-过滤器;
5、6-洗涤分层器