第一篇:高等数学重修心得
高等数学重修个人学习心得
一提起“数学”课,从小学一直到高中,它几乎就是一门陪伴着我们成长的学科。然而即使有着大学之前近12年的数学学习生涯,那么,究竟应该如何在大学中学好高数呢?我认为首先要走出心理的障碍.我想之前学不好高数的大半原因人都应该是自己学习高数没有兴趣,感觉学习高数枯燥乏味,面对的除了x,y,z别无他物.而且在高中时的数学就没有学懂,因此一上来就失去了自信心,自认为自己不行,学不懂高数.为什么这么说呢?因为最开始认为学习高数是很枯燥的事.尤其是在凳子上一坐两个小时,听着老师的讲解,这更像是在解读天书.所以考试成绩也一直不甚理想,其实我曾经的数学学的就不是不好,高考时就因为数学没考好落榜,当时的心情可想而知,尤其来到大学看到高数课本时,刚开始自己也觉得很恐怖,因为在数学前边又加了“高等”二字,想想自己连“低等数学”都没学好,高等数学要怎么学呢?然后和大家一样,初来大学每天去占座,然后试着去认真听老师讲课,结果听着听着渐渐的思绪又飘远了,知道这次开始重修高数,用一种新的方式,不懂直接就可以请教老师,原来的时候在班级害怕不懂就问会被同学取笑,所以不会也只能默默吃着亏,但是自从这次重修,每到不懂得问题,直接就可以去问老师,老师的态度也特别特别和蔼,总是细心的给我讲述一道又一道的问题,有时候觉得自己的问题好低级,老师依旧没有怨言一点一点的去给我分析和指导,渐渐地我发现自己对高数有了一点兴趣,觉得高数不过如此嘛,然后就越来越注重高数的学习。现在我才感觉到,之前认为对高数或者别的科目没兴趣那只是心理作怪,因此要克服学习高数的困难应该先克服自己的心理.具体应该怎样克服这种心理难关呢?我认为最重要的是要找回自己的自信心,不要以为自己就学不好高数,不要以为自己就不是学习高数的料,心里要有一股不服输的劲,为什么别人都可以,就我学不好呢,因此学好高数我认为首先就是要有自信心和专心的思考.这才是学习好高数的基础。然后要注重学习方法。不懂就要问
对于高数的学习,不同的人有不同的学习方法,经过这么长时间的重修,我渐渐的感觉到自己会的题要比原来多好多,有的题也可以试着自己去独立完成了,所以现在我认为不管是对高数还是对别的学科,学习,首先就要不怕挫折,有勇气面对遇到的困难,有毅力坚持继续学习,突然感觉以前的不好意思显得格外幼稚,知识学到肚子里才是自己的,最可笑的人不是什么都问的人,而是不懂装懂,只能默默吃着哑巴亏,等到真正考验自己的时候才一筹莫展到处寻找方法的人,其实感觉大学数学与中学数学明显的一个差异就在于大学数学强调数学的基础理论体系,而中学数学则是注重计算与解题,所以我都会照着书本一点一点去分析,实在不会的话马上问老师,学会举一反三,比如说积分的题不懂了,那就把导数公式,微分复习一下,然后再去问老师,免得出现老师说什么完全听不懂这种,其次认真听讲:带着问题去问老师,一定要集中注意力,专心听讲,然后仔细注意老师的讲解方法和解题思路,其分析问题和解决问题的过程,记好笔记,争取尽可能多的从老师那里学来更多的知识。
通过这次重修,老师对我的教导我才真正的明白,知识只有真正的掌握人才能硬气,想走偏门始终还是不成熟的心里,当真正学会的那一刹那,觉得内心的满足感是那样强烈,对考试也不会像原来一样害怕,甚至恐惧了,因为心里有底子了,所以感觉人也自信了,总之很感谢学校给予我们的这次重修的机会,也感谢我的老师对我孜孜不倦的教诲,千恩万谢也只有用优秀的成绩来回报老师与学校了。
第二篇:高等数学研修心得(精选)
高等数学研修心得
进入教学工作刚刚一年,经验不足。教师发展在线给我提供了一个很好的学习进步的机会。通过学习郭镜明老师高等数学的课程,我对于课程本身的知识理解更加透彻,对于教学内容的重点难点更加明确,对于教学方法技巧也有很大的提升。现将自己的心得总结如下:
首先,明确教学基本要求。为了适应时代的需要,新的教学大纲指出,教学难度整体下移,同时注意与中学教学的衔接,加强数学思想以及与计算机技术的结合。由于初高中教学改革,因此我们老师在进行授课之前要了解学生已有的知识。另外随着高等教育的大众化和计算机越来越普及,授课时要降低难度,注意培养学生的数学思想、应用。郭老师细致讲解的高等数学各个部分的难度变化,指引我接下来的高等数学教学工作。
其次,注重“三基”的教学。概念要求学生切实弄懂,需要适当记忆,才能准确把握;定理和结论,要求学生理解条件、结论,能够讲出定理的内容,并且灵活运用;基本运算,一些技巧,典型的例题,要多做练习,熟能生巧。
基本概念,是一门课程中很重要很基础的内容,而讲清楚概念是我的一个弱点。经常认为讲得清楚明白了,实际收到的效果却不太好。通过这次学习,我懂得对于一个概念,要问为什么、是什么、干什么。从概念的引入、准确表述、内涵外延的讲解、以及应用这些方面一一阐述。郭老师花了很多精力,列举了很多典型的例子,使得我对于概念教学这块收获很大。概念的引入这部分,我们可以根据讲授内容的特点,采用不同的方式,比如,从历史背景入手(无穷级数),从生活中众所周知的例子入手(极限的概念),从图形入手(方向导数)等等,从而提高课堂的趣味性,更好的调动学生学习的积极性;在概念的表述的时候,要注意不单单要有准确描述,还要有通俗描述,让学生大体上有个认识,这对于学生理解掌握很重要;另外,写上定义之后,可以结合图形,列出数学符号;接下来一定要举例子,加强理解,可以为学生写一些注,分析与以往概念的区别联系,必要的时候可以对比记忆;最后概念的应用,不单单要讲数学理论的应用,它在实际中的应用也很重要。基本定理结论和基本运算。基本定理、结论,讲解时候,要讲清楚条件和结论的充分必要性是什么,它的几何或者物理意义又是什么,适合什么样的问题类型,主要用于什么地方。基本运算,则
要讲一些典型的例题、重要的方法技巧,以及学生常犯的错误。总之,要求学生不但能够说出定理的内容,还能够灵活应用。讲课过程中,注意问题是如何解决的,为什么这么解决,突出数学思想。另外,引导学生对于不同的题目归类、整理,通过练习熟练把握。再次,课堂教学。课堂教学采用板书加多媒体的方式,对于板书表达不是很直观,或者画图不是很方便时,结合多媒体进行演示;教学要突出数学思想,引导学生主动思考、解决问题,提高学习的积极性主动性;将数学建模、数学实验的思想引入教学当中,提高学生分析问题、解决问题的能力;例题的选择,如果是习题课,可以引入一些高效的复习题,对比各个概念,总结归纳不同的解题技巧方法,如果不是习题课,则选择一些基础性的典型的题目;一堂课的教学,不要把内容填的满满的,结合学生的实际情况,给学生思考提问的时间;由于一个人的注意力不可能总是很集中,因此,可以在教学中可采用提问、做练习、讲数学发展过程中的趣闻轶事等方式帮助学生集中注意力。
最后,作业布置可以采用多种方式,让学生根据自己的乐趣进行选择;习题配置方面,可以借鉴美国的一些特点,适当的设计一些新颖的、风格各异的题目,比如借助计算器的题目、借助数学软件的题目、一些探索题等,使得我们的习题更好的辅助教学,增加数学的趣味性,也更加现代化;注重分析、图形、数值三方面的结合的题目设置,突出数学思想,提高学生的能力;对于作业的问题要及时解决,习题课是必不可少的。
总之,郭老师对于高等数学的精彩讲授,提高了我的教学理论水平,受益匪浅。我要把学到的理论融于实践,多多改进教学,不断总结经验,提高自己的教学工作水平,争做一名受学生欢迎的好老师!
霍振香 2012年7月19日
第三篇:重庆大学《高等数学 Ⅱ-2》重修试题A0812月(答案)
重庆大学试卷教务处07版
重庆大学高等数学Ⅱ-2(重修)课程试卷
2009~2010学年
2lny法线方程为x
1y
z2
11
.切平面方程:8x4y4z10。
3.(9分)利用格林公式计算曲线积分2
yL
2(x
3xy21)dy,其中L为正向圆周x2y22x。
解:由格林公式
(x
y2
y)dxdy
(x
y2)dxdy0
L
D
D
2cos
2
用极坐标
r3
drd
d
r3
dr8
cos4
d
831D
4223
.
0
四、计算题(共49分)
1.(9
分)求微分方程dy
y
dx2(lnyx)的通解。
dxdy
2(lnyx)
2y
y
x
2lnyy
即
dxdy
2y
x
2lnyy
xe
2
ydy
(2lnyydy
y
edyC)
e2lny
(
lny
y2dyC)
12lny
y2
(
y
y2
dyC)
y2
(2ylnydyC)
y
(lnyd(y2)C)
1(y2
lny
y
y
2C)
(lny
12Cy)
2.(9分),求过点(3,1,2)且通过直线
x4y35
2
z1的平面方程。
解:由已知点A(3,1,2),B(4,3,0)在平面上,直线的方向向量为
s(5,2,1)
则AB
(1,4,2),所求平面的法向量为nAB
s(8,9,22)
平面直线的方程为8(x3)9(y1)22(z2)0 即为8x9y22z59
0
3.(9分)利用高斯公式计算曲面积分(x
y)dxdy(yz)xdydz,
其中为柱面
x2y2
1及平面z0,z3所围成的空间闭区域
的整个边
界曲面的外侧。解:(x
y)dxdy(yz)xdydz
(yz)dxdydz
213
(sinz)dddz
dd(sinz)dz
9
4.(9分)
求幂级数n(x1)n的收敛域及和函数。
n1
由 lim
an1lim
n1x1x1
n
an
n
n
当x1时收敛,即收敛域为:0x2设和函数为:
S(x)
n(x1)
n
(x1)n(x1)
n1
n1
n1
(x1)[(x1)n
]
n1
(x1)[x11(x1)]
(x1)[x12](x1)
1x
(2x)
x1(2x)
5.(13分)设x
y2z1,求x2y2z的极小值.解:作拉格朗日函数F(x,y,z,)x2
y2
z2
(xy2z1),令
Fx2x0,Fy2y0,Fz2z20,Fxy2z10
得
13,驻点为(16,16,1),由题知函数在该点处取得极小,其极小值为16
.重庆大学试卷教务处07版
第四篇:高等数学
《高等数学》是我校高职专业重要的基础课。经过我们高等数学教师的努力,该课程在课程建设方面已走向成熟,教学质量逐步提高,在教学研究、教学管 理、教学改革方面,我们做了很多工作,也取得了可喜的成果。
《高等数学》是学习现代科学技术必不可少的基础知识。一方面它是学生后 继课程学习的铺垫,另一方面它对学生科学思维的培养和形成具有重要意义。因此,它既是一门重要的公共必修课,又是一门重要的工具课。紧扣高职高 专的培养目标,我们的《高等数学》课的定位原则是“结合专业,应用为主,够用为度,学有所用,用有所学”,宗旨是“拓宽基础、培养能力、重在应用”
根据高职高专的培养目标,高等数学这门课的教学任务是使学生在高中数学 的基础上,进一步学习和掌握本课程的基础知识、基本方法和基本技能,逐步 培养学生抽象概括问题的能力,一定的逻辑推理能力,空间想象能力,比 较熟练的运算能力和自学能力,提高学生在数学方面的素质和修养,培养 学生综合运用所学知识分析问题、解决问题的能力。
高等数学这门课的教学设计思想是:根据专业设置相应的教学内容。我们将 《高等数学》分成四大类:轻化工程、电子、计算机和财经。四大类的公共教 学内容为:一元函数微积分,微分方程。三类工科数学增加:空间解析几何、多 元微积分学。计算机和电子再增加级数。电子类专业还专门开设拉普拉氏变换。财经专业另开设线性代数初步。达到了专业课对基础课的要求。
同时,在教学内容的安排上,还注意了以下几点:
1、数学知识的覆盖面不宜太宽,应突出重点,不过分追求数学自身的系统 性,严密性和逻辑性。淡化数学证明和数学推导。
2、重视知识产生的历史背景知识介绍,激发学生的学习兴趣。每一个概念 的引入应遵循实例—抽象—概念的形成过程。
3、重视相关知识的整合。如在一元微积分部分,可将不定积分与定积分整 合,先从应用实例引入定积分的概念,再根据定积分计算的需要引入不定积分
4、强调重要数学思想方法的突出作用。强化与实际应用联系较多的基础知 识和基本方法。加强基础知识的案例教学,力求突出在解决实际问题中有重要 应用的数学思想方法的作用,揭示重要的数学概念和方法的本质。例如,在导 数中强调导数的实质——变化率;在积分中强调定积分的实质—无限累加;在 微分中强调局部线性化思想;在极值问题中强调最优化思想;在级数中强调近似计算思想。
5、注重培养学生用数学知识解决实际问题的意识与能力。
6、根据学生实际水平,有针对性地选择适当(特别是在例题、习题、应用 案例及实验题目等方面)的教学内容,应尽量淡化计算技巧(如求导和求积分 技巧等)。
知识模块顺序及对应的学时《高等数学》工科课程主要分为七部分的知识模 块,共需要用168个学时.1、一元函数微分学部分(极限、导数及其应用),需用60个学时;
2、一元函数积分学部分(不定积分、定积分及其应用),需用30个学时;
3、微分方程部分,需用12个学时。
4、向量代数与空间解析几何部分,需用24个学时;
5、多元函数微分学部分(偏导数及其应用),需用22个学时;
6、多元函数积分学部分(二重积分及其应用),需用8个学时;
7、无穷级数部分,需用30个学时; 课程的重点、难点及解决办法 1、课程的重点
本课程的研究对象是函数,而研究问题的根本方法是极限方法,极限方法贯 穿于整个课程。本课程的重点是教会学生在掌握必要的数学知识(如导数与 微分、定积分与重积分及级数理论等)的同时,培养学生应用数学的思想方 法解决实际问题的意识、兴趣和创新能力。
2、课程的难点
本课程的教学难点在于由实际问题抽象出有关概念和其中所蕴涵的数学思想,培养学生应用数学的思想方法解决实际问题的意识、兴趣和能力;一元函数 的极限定义并用定义证明极限、定积分的应用、多元复合抽象函数的求偏导,根据实际问题建立微分方程等内容是高等数学学习过程中的难点。
3、解决办法
对于工科类高等数学,讲授时一般以物理、力学和工程中的数学模型为背景 引出问题,采取启发式教学以及现代化教学手段,讲清思想,加强基础;注 意连续和离散的关系,加强函数的离散化处理,注意培养学生研究问题和解 决实际问题的能力;注意教学内容与建立数学模型之间的联系。在微积分学 的应用中,更是关注物理模型的建立和研究思想。另外,重点、难点内容多 配备题目,课堂讲解通过典型例题的分析过程和解决过程掌握重点、突破难 点;课外还布置一定量的练习题;最近几年以来,基础部学科建设发展迅速,研究成果和学术论文突飞猛进,学术环境和氛围极大改善。基础部科研和教 学活动的新的水平层次,为《高等数学》精品课程的建设和发展,提供了优 秀的学术环境和平台。
教 学 大 纲
一、内容简介
本课程的内容包括函数的极限与连续,微分及其应用,积分及其应用,常微分方程,空间解析几何与向量代数、多元函数微积分及其应用,无穷级数,线性代数初步,数学实验等。其中函数的极限与连续,微分及其应用,积分及其应用为各专业的基础部分。空间解析几何与向量代数、多元函数微积分及其应用,无穷级数,线性代数初步,数学实验为选学模块,各专业可根据专业培养目标的要求,选学相应的教学内容。
二、课程的目的和任务
为培养能适应二十一世纪产业技术不断提升和社会经济迅速发展的高等技术应用型人才,教学中本着重能力、重应用、求创新的思路,切实贯彻“以应用为目的、理论知识以必需、够用为度”的原则,落实高职高专教育“基础知识适度,技术应用能力强,知识面较宽,素质高”的培养目标,从根本上反映出高职高专数学教学的基本特征,反映出目前国内外知识更新和科技发展的最近动态,将工程技术领域的新知识、新技术、新内容、新工艺、新案例及时反映到教学中来,充分体现高职教育专业设置紧密联系生产、建设、服务、管理一线的实际要求。在教学内容的组织上,注意以下几点:
1.注意数学知识的深、广度。基础知识和基本理论以“必需、够用”为度.把重点放在概念、方法和结论的实际应用上。多用图形、图表表达信息,多用有实际应用价值的案例、示例促进对概念、方法的理解。对基础理论不做论证,必要时只作简单的几何解释。
2.必须贯彻“理解概念、强化应用”的教学原则。理解概念要落实到用数学思想及数学概念消化、吸纳工程技术原理上;强化应用要落实到使学生能方便地用所学数学方法求解数学模型上。
3.采用“案例驱动”的教学模式。由实际问题引出数学知识,再将数学知识应用于处理各种生活和工程实际问题。重视数学知识的引入,激发学生的学习兴趣。每一个概念的引入应遵循实例—抽象—概念的形成过程。
4.重视相关知识的整合。如在一元微积分部分,可将不定积分与定积分整合,先从应用实例引入定积分的概念,再根据定积分计算的需要引入不定积分。
5.要特别注意与实际应用联系较多的基础知识、基本方法和基本技能的训练,但不追求过分复杂的计算和变换。可通过数学实验教学,提升学生对的数学问题的求解能力。加强基础知识的案例教学,力求突出在解决实际问题中有重要应用的数学思想和方法的作用,揭示重要的数学概念和方法的本质。例如,在导数中强调导数的实质——变化率;在积分中强调定积分的实质—无限累加;在微分中强调局部线性化思想;在极值问题中强调最优化思想;在级数中强调近似计算思想。
6.在内容处理上要兼顾对学生抽象概括能力、自学能力、以及较熟练的综合运用所学知识分析问题、解决问题的能力以及创新能力的培养.真正体现以学生为主体,以教师为主导的辨证统一。
三、课程内容
第一章 函数的极限与连续
理解一元函数的概念及其表示;了解分段函数;了解复合函数的概念,会分析复合函数的复合过程。熟悉基本初等函数及其图形;能熟练列出简单问题中的函数关系;理解数列极限与函数极限的概念;会用极限思想方法分析简单问题;了解函数左、右极限的概念,以及函数左、右极限与函数极限的关系;掌握极限四则运算法则;理解函数连续、间断的概念;知道初等函数的连续性;会讨论分段函数的连续性。第二章 一元函数微分学及其应用
理解导数和微分的概念;能用导数描述一些经济、工程或物理量;熟悉导数和微分的运算法则和导数的基本公式;了解高阶导数的概念;能熟练地求初等函数的导数,会求一些简单函数的高阶导数,会用微分做近似计算;会建立简单的微分模型。第三章
导数的应用
会用罗必达解决未定型极限;理解函数的极值概念;会求函数的极值,会判断函数的单调性和函数图形的凹、凸性等;熟练掌握最大、最小值的应用题的求解方法。第四章
一元函数积分学及其应用
理解不定积分和定积分的概念;了解不定积分和定积分的性质;理解定积分的几何意义;熟悉不定积分的基本公式;掌握不定积分的直接积分法、第一类换元法和常见类型的分部积分法;熟练掌握牛(Newton)-莱布尼兹(Leibniz)公式;熟练掌握定积分的微元法,能建立一些实际问题的积分模型;会用微元分析法建立简单的积分模型;了解广义积分的概念.了解微分方程的阶、解、通解、初始条件、特解等概念;掌握可分离变量微分方程及一阶线性微分方程的解法;掌握二阶常系数齐次线性微分方程的解法;会建立简单的微分方程模型。第五章
空间解析几何与向量代数
理解向量的概念,掌握向量的线性运算、点乘、叉乘,两个向量垂直、平行的条件;熟悉单位向量、方向余弦及向量的坐标表达式;掌握用坐标表达式进行向量运算;理解曲面方程的概念,熟悉平面方程和直线方程及其求法;了解常用的二次曲面的方程,了解以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程;了解曲线在坐标平面上的投影。第六章
多元函数微分法及其应用 理解多元函数的概念;了解二元函数的极限与连续性概念及有界闭域上连续函数的性质;了解偏导数和全微分的概念,了解全微分存在的必要条件和充分条件;掌握复合函数一阶偏导数的求法,会求复合函数的二阶偏导数;会求隐函数的偏导数;理解多元函数极值和条件极值的概念,会求一些极值。第七章
二重积分
理解二重积分的概念,了解重积分的性质和几何意义;掌握二重积分的计算方法。第八章
无穷级数
了解无穷级数收敛、发散及和的概念,基本性质及收敛的必要条件;掌握几何级数和P-级数的收敛性;掌握正项级数的比较审敛法,比值审敛法;了解交错级数的莱布尼兹定理;了解无穷级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;了解函数项级数的收敛域及和函数的概念;掌握比较简单的幂级数收敛区间的求法;了解幂级数在其收敛区间内的一些基本性质;了解函数展开为泰勒级数的充要条件;会将一些简单的函数间接展开成幂级数。了解函数展开为傅里叶级数的狄利克雷条件,会将定义在(-π,π)上的函数展开为傅里叶级数,并会将在(0,π)上的函数展开为正弦或余弦级数。知道傅里叶级数在工程技术中的应用。了解拉普拉斯变换和逆变换的概念,会求解简单信号函数的拉普拉斯变换和逆变换。第九章 线性代数初步
理解矩阵的概念;掌握用矩阵表示实际量的方法;熟练掌握矩阵的线性运算、乘法运算、转置及其运算规律;熟练掌握矩阵的初等变换;理解逆矩阵的概念,会用矩阵的初等变换求方阵的逆矩阵。会建立简单的线性模型;熟练掌握用行初等变换求线性方程组通解的方法。第十章 数学实验
数学实验是以实际问题为实验对象的操作实验,其教学不仅让学生了解和掌握一种数学实验软件,而更重要的是培养学生运用数学知识分析和解决问题的能力。
四、课程的教学方式
本课程的特点是思想性强,与相关基础课及专业课联系较多,教学中应注重由案例启发进入相关知识,并突出帮助学生理解重要概念的思想本质,避免学生死记硬背。要善于将有关学科或生活中常遇到的名词概念与微积分学的概念结合起来,使学生体会到数学学习的必要性。同时,注重各教学环节(理论教学、习题课、作业、辅导参考)的有机联系, 特别是强化作业与辅导环节,使学生加深对课堂教学内容的理解,提高分析解决问题的能力和运算能力。教学中有计划有目的地向学生介绍学习数学与学习专业课之间的关系,学习数学是获取进一步学习机会的关键学科。
五、各教学环节学时分配
序号教学模块理论课时习题课时实 验共计备注
1函数的极限与连续166 22各专业的公共基础 2 导数与微分204 24 3导数的应用104 14 4一元函数积分及其应用228 30
常微分方程102 12轻化、电子、计算机、经济类学生选
5空间解析几何与向量代数186 24轻化、电子、计算机类学生选 6多元函数微积分及其应用166 22轻化、电子、计算机类学生选
7二重积分62 8 8无穷级数246 30电子、计算机类学生选
9线性代数初步144 18电子、计算机、经济类学生选 10 实验
六、执行大纲时应注意的问题
1.大纲以高职高专各专业为实施对象。
2.模具和高分子专业增加极坐标和曲率;电子专业增加拉普拉斯变换。3.数学实验课程视情况开设。
教学效果
高等数学课程是一门十分繁重的教学任务,不仅学时多、面对学生人数多,而且责任大。学校、系、学生都十分关注这门课程的教学质量,它涉及到后续课程的教学,特别是它影响培养人才的质量和水平。基础部历来非常重视高等数学的教学质量,积极组织教师开展教学研究,要求任课教师认真负责地对待教学工作,备好、讲好每一节课。多年来高等数学的教学质量和教学水平一直受到学校和学生的好评。
从课堂表现可以看出教师备课是充分的。讲授熟练,概念清楚,重点突出。特别是贯彻启发式教学,教与学互动,课堂提问讨论,学生课堂解题等,师生配合较好,课堂气氛活跃,调动了学生的学习积极性。教师们经常讨论各章节的重点难点应如何处理,如何分析引出概念,如何贯彻启发式教学,哪些问题要留给学生自己解决。这种教学研讨一学期要有十多次,有时几乎每周都有安排。严谨治学、严格要求、教书育人、为人师表是基础部的优良传统,可以说高等数学教研室在师资队伍建设上成绩是突出的。高等数学在教学改革上,准备将数学建模和数学实验引入高等数学教学中,从而来提高学生学习兴趣,尝到数学应用的益处,提高学数学的积极性
课程的方法和手段
本课程运用现代教育技术、采用多种教学手段相结合的方式。大多数教师在教学中使用powerpoint课件、电子教案、模型教具等辅助手段,使教学内容的表达更生动、直观,有效提高了教学效果。采用多媒体辅助教学的教师比例达到100%。具体情况如下:
1.坚持“少讲、留疑、迫思、细答、深析”的教学原则,试点“讨论式”、“联想式”、“逆反式”等教学方法。
高等数学是学生进入大学后首先学习的课程之一,内容难以理解,课堂教学容量大。如何培养学生独立学习的能力,也是教师义不容辞的责任。为转变学生中学养成的依赖教师的学习习惯,尽快适应大学学习生活,我们在教学中提出“少讲、留疑、迫思、细答,深析”的教学 原则,开展了“讨论式”、“联想式”、“逆反式”等教学方法,收到了较好的效果。
2.提倡研究式学习方法,培养学生初步进行科学研究的能力和创新精神
工科学生学习数学的主要目的,是能将所学数学知识用于专业研究中。为激发学生的求知欲、锻炼学生的初步研究能力、培养学生的综合素质与创新精神,我们尝试在部分班级开展研究式的学习方法。具体方法是:将部分教学内容改造成研究问题,让学生通过课程学习、查阅资料、相互讨论等形式思考研究问题。例如针对微分方程的应用、各种定积分的比较研究等问题开展这项活动,学生反映很好。
3.传统教学手段与现代教学手段结合,提高教学效果
在部分内容保留传统教学方式的基础上,积极运用现代教育技术,探索计算机辅助教学的模式,研制电子教案,并在部分班级进行试点。例如:我们利用电子教案讲授空间解析几何、重积分等内容,使一些空间图形的演示更直观、更清楚,便于学生理解和掌握。
4.加强课下辅导,及时为学生排疑解难
课下的辅导答疑是高等数学教学的重要环节,为加强这个环节,我们安排了正常的辅导答疑。
5.积极开展课外科技活动
为配合高等数学的教学工作,我们准备开设《Mathematica》和《数学建模》两门院级选修课,为基础较好的学生提供进一步提高的机会。同时,积极组织学生参加数学建模竞赛。
第五篇:高等数学
§13.2 多元函数的极限和连续
一 多元函数的概念
不论在数学的理论问题中还是在实际问题中,许多量的变化,不只由一个因素决定,而是由多个因素决定。例如平行四边行的面积A由它的相邻两边的长x和宽y以及夹角所确定,即Axysin;圆柱体体积V由底半径r和高h所决定,即Vr2h。这些都是多元函数的例子。
一般地,有下面定义:
定义1: 设E是R2的一个子集,R是实数集,f是一个规律,如果对E中的每一点(x,y),通过规律f,在R中有唯一的一个u与此对应,则称f是定义在E上的一个二元函数,它在点(x,y)的函数值是u,并记此值为f(x,y),即uf(x,y)。
有时,二元函数可以用空间的一块曲面表示出来,这为研究问题提供了直观想象。例如,二元函数xRxy222就是一个上半球面,球心在原点,半径为R,此函数定义域为满足关系式x2y2R2的x,y全体,即D{(x,y)|x2y2R2}。又如,Zxy是马鞍面。
二 多元函数的极限
定义2
设E是R2的一个开集,A是一个常数,二元函数fMf(x,y)在点M0x0,y0E附近有定义.如果0,0,当0rM,M0时,有f(M)A,就称A是二元函数在M0点的极限。记为limfMMM0A或fMAMM0。
定义的等价叙述1 :设E是R2的一个开集,A是一个常数,二元函数fM在点0f(x,y)M02x,0y02E近有定义.如果0附,0,当xx0yy0时,有f(x,y)A,就称A是二元函数在M0点的极
龙岩学院数计院
限。记为limfMMM0A或fMAMM0。
定义的等价叙述2: 设E是R2的一个开集,A是一个常数,二元函数fM在点M0x,0y0f(x,y)附E近有定义.如果0,0,当0xx0,0yy0且x,yx0,y0时,有f(x,y)A,就称A是二元函数在M0点的极限。记为limfMMM0A或fMAMM0。
注:(1)和一元函数的情形一样,如果limf(M)A,则当M以任何点列及任何方式趋
MM0于M0时,f(M)的极限是A;反之,M以任何方式及任何点列趋于M0时,f(M)的极限是A。但若M在某一点列或沿某一曲线M0时,f(M)的极限为A,还不能肯定f(M)在M0的极限是A。所以说,这里的“”或“”要比一元函数的情形复杂得多,下面举例说明。
例1:设二元函数f(x,y)xyxyxyxy22222,讨论在点(0,0)的的二重极限。
例2:设二元函数f(x,y)2,讨论在点(0,0)的二重极限是否存在。
0,例3:f(x,y)1,xy其它或y0,讨论该函数的二重极限是否存在。
二元函数的极限较之一元函数的极限而言,要复杂得多,特别是自变量的变化趋势,较之一元函数要复杂。
例4:limxyxxyysinxyx22。
xy例5:① limx0y0
② lim(xy)ln(xy)③ lim(xy)ex0y0xy2222222(xy)
例6:求f(x,y)xy3223xy在(0,0)点的极限,若用极坐标替换则为limrr0cossincossin33220?
龙岩学院数计院
(注意:cos3sin3在74时为0,此时无界)。
xyxy222例7:(极坐标法再举例):设二元函数f(x,y)证明二元极限不存在的方法.,讨论在点(0,0)的二重极限.
基本思想:根据重极限定义,若重极限存在,则它沿任何路径的极限都应存在且相等,故若1)某个特殊路径的极限不存在;或2)某两个特殊路径的极限不等;3)或用极坐标法,说明极限与辐角有关.
例8:f(x,y)xyxy22在(0,0)的二重极限不存在.
三
二元函数的连续性
定义3
设fM在M0点有定义,如果limf(M)f(M0),则称fMMM0在M0点连续.
0,0,当0 如果f在开集E内每一点连续,则称f在E内连续,或称f是E内的连续函数。 例9:求函数utanx2y2的不连续点。 四 有界闭区域上连续函数的性质 有界性定理: 若fx,y再有界闭区域D上连续,则它在D上有界。一致连续性定理: 若fx,y再有界闭区域D上连续,则它在D上一致连续。最大值最小值定理: 若fx,y再有界闭区域D上连续,则它在D上必有最大值和最小值。 零点存在定理: 设D是Rn中的一个区域,P0和P1是D内任意两点,f是D内的连续函数,如果f(P0)0,f(P1)0,则在D内任何一条连结P0,P1的折线上,至少存在一点Ps,使f(Ps)0。 龙岩学院数计院 五 二重极限和二次极限 在极限limf(x,y)中,两个自变量同时以任何方式趋于x0,y0,这种极限也叫做重xx0yy0极限(二重极限).此外,我们还要讨论当x,y先后相继地趋于x0与y0时f(x,y)的极限.这种极限称为累次极限(二次极限),其定义如下: 若对任一固定的y,当xx0时,f(x,y)的极限存在:limf(x,y)(y),而(y)xx0在yy0时的极限也存在并等于A,亦即lim(y)A,那么称A为f(x,y)先对x,再 yy0对y的二次极限,记为limlimf(x,y)A. yy0xx0同样可定义先y后x的二次极限:limlimf(x,y). xx0yy0上述两类极限统称为累次极限。 注:二次极限(累次极限)与二重极限(重极限)没有什么必然的联系。例10:(二重极限存在,但两个二次极限不存在).设 11xsinysinyxf(x,y) 0x0,y0x0ory0 由f(x,y)xy 得limf(x,y)0(两边夹);由limsinx0y01y不存在知f(x,y)的累次 y0极限不存在。 例11:(两个二次极限存在且相等,但二重极限不存在)。设 f(x,y)xyxy22,(x,y)(0,0) 由limlimf(x,y)limlimf(x,y)0知两个二次极限存在且相等。但由前面知x0y0y0x0limf(x,y)不存在。 x0y0例12:(两个二次极限存在,但不相等)。设 f(x,y)xyxy2222,(x,y)(0,0) 龙岩学院数计院 则 limlimf(x,y)1,limlimf(x,y)1;limlimf(x,y)limlimf(x,y)(不x0y0y0x0x0y0y0x0可交换) 上面诸例说明:二次极限存在与否和二重极限存在与否,二者之间没有一定的关系。但在某些条件下,它们之间会有一些联系。 定理1:设(1)二重极限limf(x,y)A;(2)y,yy0,limf(x,y)(y).则 xx0yy0xx0yy0lim(y)limlimf(x,y)A。 yy0xx0(定理1说明:在重极限与一个累次极限都存在时,它们必相等。但并不意味着另一累次极限存在)。 推论1: 设(1)limf(x,y)A;(2)(3)y,yy0,limf(x,y)存在;x,xx0,xx0yy0xx0yy0limf(x,y)存在;则limlimf(x,y),limlimf(x,y)都存在,并且等于二重极限yy0xx0xx0yy0xx0yy0limf(x,y)。 推论2: 若累次极限limlimf(x,y)与limlimf(x,y)存在但不相等,则重极限 xx0yy0yy0xx0xx0yy0limf(x,y)必不存在(可用于否定重极限的存在性)。 222例13:求函数fx,yxy22xyxy在0,0的二次极限和二重极限。 龙岩学院数计院