首页 > 文库大全 > 教学资源 > 教学设计

加法结合律教学设计(优秀范文五篇)

加法结合律教学设计(优秀范文五篇)



第一篇:加法结合律教学设计

加法结合律这部分内容是在加法意义的基础上进行教学的,是继加法交换律之后的加法第二个运算定律,学好加法结合律,对于加法的简便运算,提高计算速度和准确程度很有帮助。下面是小编收集整理的加法结合律教学设计,欢迎阅读参考!

教学目标:

1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。

2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。

3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

教学重点:

让学生在探索中经历运算律的发现过程,理解不同算式间的相等关系,发现规律,概括运算律。

教学难点:

概括运算律,尝试用字母表示

教学过程:

一、探索加法交换律

1、看谁填得又对又快?

96+35=35+()204+()=57+204

23+()=15+()()+257=()+632、观察与发现

提问:仔细观察这6个算式,你发现了什么?

3、猜测与尝试

是不是所有的加法算式,加数交换位置以后,结果都相等呢?

4、生活中的应用

图示:

图中的小朋友在干什么?从图中你了解到了什么?能提出数学问题吗?我们选择一个:跳绳的有多少人?

【预测:学生通常会列出28+17这样的算式,如果出现了17+28,让学生评议是否正确?28+17表示什么?17+28表示什么?】

5、用自己的话说说你的发现

【预测:学生的说法可能不够简练和准确,教师用肢体、表情等引导学生说清楚,再归纳】

教师小结:类似这样的等式能写完吗?虽然咱们写出的等式各不相同,但是仔细观察,它们却蕴藏着共同的规律,那就是——交换加数的位置,和不变,这就叫做加法交换律。

6、用字母表示加法交换律

教师:在数学上,我们通常用字母a和b来表示两个加数,那么,加法交换律可以写成:a+b=b+a。

7、加法交换律的应用之一:验算

加法交换律是我们的老朋友了,想一想,什么时候曾经用过它?

加法验算,交换两个加数的位置再加一遍就是运用了加法交换律。

二、探索加法结合律。

1.运用加法交换律使计算简便

出示例题:回到操场,刚才是跳绳的同学,现在有什么变化?(屏示:23个踢毽子的女同学)

学生独立完成,要求列出综合算式。

展示(选择有代表性的几种进行展示):

28+17+23 28+17+23 28+17+23

=45+23 =17+23+28 =28+(17+23)

=68(人)=40+28 =28+40

=68(人)=68(人)

【预测:以上三种不同的算法,学生做出前两种应该没有问题。至于第三种,学生能够想到,能运用小括号使计算简便,一并观察探索研究。】

2、探索加法结合律

28+17+23

思考,如果不使用加法交换律调整加数的位置,有没有办法先计算17+23呢?

【预测:学生能很快想到,使用小括号,可以改变原有的运算顺序,使计算简便。】

指明一位学生板演。

3、猜测规律,举例验证。

这个发现,会不会仅仅是一种巧合呢?如果换成其他的三个数相加,左右两边的得数还会相同吗?你能不能再举些例子来验证?同桌互相验证,全班汇报。

4、归纳什么叫加法结合律

学生观察,教师提问:计算28+17+23,按照四则运算法则,应该先算什么?(指明学生回答)

继续提问:可是我们发现,先算17+23,可以得到一个整十数,再跟28相加,计算就会简便的多,所以我们选择先把后两个数相加,这样的话,结果会不会改变呢?

归纳小结:先把前两个数相加,或者先把后两个数相加,结果不变,这就叫做加法结合律。

5、用字母表示加法结合律

鼓励学生尝试用字母表示加法结合律。

6、巩固与练习

你能在方框内填出合适的数吗?

(45+36)+64=45+(36+)

(72+20)+=72+(20+8)

560+(140+70)=(560+)+

【预测:学生急于尝试刚学到的运算定律,可能只是急着填数,而忽略了计算结果。教师在充分肯定学生的练习正确之时,多提一个要求:现在你能马上算出它们的结果了吗?】

三、课堂练习

1、你能把得数相同的算式连一连吗?

(1)72+16 A.(75+25)+48

(2)45+(88+12)B.16+72

(3)75+(48+25)C.(45+88)+12

(4)(84+68)+32 D.84+(68+23)

【预测:第四个算式和D选项算式是连不上的,因为其中的一个加数32在D选项中改成23了。但是定势会使大部分学生想当然地连上了。也会有少数学生能及时发现问题。放手让学生自己去发现,去争论,去甄别。】

集体订正后,教师小结。

2、拓展练习

水果店运进四筐苹果,分别重45千克、63千克、37千克、55千克,水果店这次一共运进多少千克苹果?

四、课堂小结

原来巧用运算律还能使一些计算更简便呢!这就是我们下一节课继续研究!

第二篇:加法结合律教学设计

《加法结合律》教学设计

教学目标:

1、不断的设疑中启发学生思考、自主探究、发现规律。问题是数学学习的根本,通过不断地设置问题,引导学生思考,使学生在比较中感知加法结合律的意义。接着通过验证、猜想,使学生发现加法结合律,并会用字母表示。

2、注重发挥学生的主体地位,加深对知识的理解。

《数学课程标准》指出:学生是数学学习活动的主体。本设计在探索的过程中引导学生通过观察、思考、抽象、概括、交流等活动,经历探究加法结合律的过程,初步感受应用加法结合律可以使计算简便,把学习的主动权交给学生,并在师生互动和生生互动中加深学生对新知的理解和应用,使学生真正体会到数学知识的价值所在。

教师准备: PPT课件

教学重点:会运用加法结合律对一些算式进行简便计算。教学难点:加法结合律的推导过程。教学过程:

一、谈话导入

同学们喜欢欣赏美丽的风景吗?如何去欣赏呢?坐游览车或步行是不错的选择。在我们解决生活中的数学问题时,方法也是多种多样的。这就需要我们用心去观察、去思考、去解答。这节课你能做到这三点吗?

二、探究学习加法结合律的意义

1、出示情境图 一共有多少个水果? 30+40+50(30+40)+50 30+(40+50)

观察这些算式有什么共同点和不同点?

生说:“位置不变,运算顺序改变了。

2、出示生活情境

问:你能知道买这三件物品需要多少元? 生:20+23+6(20+23)+6 20+(23+6)那你发现了什么?

生:位置不变,运算顺序改变了。师板书:算式

用等号连接算式。你能用语言描述出这些算式的特点吗/ 生;三个数想加,先把前两个数相加或者先把后两个数相加,它们的和不变。像这样的等式我们叫做加法结合律。

3、用字母表示为:(a+b)+c=a+(b+c)

4、尝试写这样的两组算式可以吗?

三、巩固与应用 1、57+288+43 运用了加法交换律和加法结合律进行简便计算。

2、填空。

3、怎样计算简便呢?

4、生活中简便计算的应用及拓展。(四个数相加)

四、拓展延伸。

100-24-36=100-(24+36)运用了减法的性质

五、课堂总结。

这节课你学会了什么?

板书

30+40+50写成(30+40)+50=30+(40+50)用字母表示:(a+b)+c=a+(b+c)

第三篇:《加法结合律》教学设计

《加法结合律》教学设计

教学内容:教材2—3页

教学目标:

知识与技能:

理解并掌握加法结合律,并能够用字母表示,初步感受应用加法结合律可以使一些计算简便,发展应用意识。

过程与方法:

经历探索加法结合律的过程,发展学生的分析、比较、抽象、概括能力,渗透符号意识。

情感态度价值观:

感受数的运算与日常生活的密切联系,获得探究的乐趣和成功的体验,初步形成独立思考、合作交流的意识和习惯。

教学重、难点:经历运算律的探索过程,发现规律,概括规律

教学准备:

教学过程:

一、激情导入、导入题:口算下面两题0+70+30

240+10+9

说说你是怎样算的,针对先算70+30和10+9提出质疑:这样算对吗?有什么依据吗?这节我们就来学习加法结合律。

板书题:加法结合律

2、明确目标:出示学习目标,齐读一次。

3、效果预期:关于加法计算,我们已经有了那么多的经验,这些经验能帮助我们很好的认识加法结合律。

二、民主导学

任务

一、认识加法结合律

、任务呈现:

(1)、出示算式

+96=288

88+(104+96)=288(千米)

再针对这两个算式开展研究:+96

88+(104+96)

(2)、猜一猜:这两个式子相等吗?怎样证明?

观察思考:比较两个算式,什么变了?什么没变?

通过这两个式子,你作什么猜想?怎样证明你的想法?

2、自主学习

小组合作探究,按照任务要求认真完成。

3、展示交流,说说你有什么猜想?怎样证明你的想法?

学生自己归纳出“三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。”

任务

二、能用符号表示加法结合律。、任务呈现:你会用符号表示加法结合律吗?

2、自主学习:独立完成。

3、展示交流:展示学生的各种表示方法,重点介绍图形表示法和字母表示法。

任务

三、会运用加法结合律进行简便计算。

、任务呈现:你会用加法结合律进行简便计算吗?

出示题组,请学生独立完成。

A、用简便方法计算下面各题。

(1)32+93+68

(2)14+46+79+121

B、你能在()里填上合适的数吗?

60+(140+70)=(+)+

()

2、自主学习:独立完成。

3、展示交流。

三、检测导结、出示检测题,要求8分钟内独立完成。

①、你能在横线上填出合适的数吗?

(4+36)+64=4+(36+□)

(72+20)+□=72+(20+8)

60+(140+70)=(60+□)+□

②、你能把得数相同的算式连一连吗?

⑴72+16

A、(7+2)+48

⑵4+(88+12)

B、16+72

⑶7+(48+2)

、(4+88)+12

2、出示正确答案,同桌互相检查,指出其中的错误并改正。

3、反思总结:你有什么新的收获?有什么想和大家交流一下吗?

让学生回顾今天所学的内容,并将其内化为自己的知识。

四、板书设计:

加法结合律

+96

88+(104+96)

=192+96

=88+200

=288

=288

+96=88+(104+96)

+=a+

第四篇:《加法结合律》教学设计

《加法结合律》说课稿

说教材内容

本课时学习的是教材18页的内容。例2同样是以情境图的形式,将李叔叔笔记本中的内容放大,从中看出李叔叔记录了三天各行了多少千米,并提出求这三天所行路程的和的问题。从解决这个问题的两种算法中可以得到一个加法结合律的实例。在此基础上,引导学生举例、观察、比较、概括总结出加法结合律。本节课的学习,为以后学习简便计算起到重要的奠基作用。

说已学知识

1.两个加数交换位置,和不变。2.用“凑十法”进行加法计算。说教学目标 知识与技能

1.理解和掌握加法结合律,并能用字母和符号表示。

2.初步学习用加法结合律进行简便运算,提高学生的运算能力。过程与方法

1.通过解决实际问题,发现并概括加法结合律,提高概括能力和语言表达能力,体会概括和建模思想的应用,培养学生的符号感。

2.在探究运算定律的过程中充分利用学生已有的知识基础,促进知识的迁移。

情感、态度与价值观

1.引导学生发现知识的内在规律,激发学生的学习兴趣。2.感受数学与现实生活的联系,能用所学知识解决简单的实际问题,激发学生学习数学的兴趣。

重点难点

重点:理解并掌握加法结合律。

难点:灵活运用加法结合律进行简便运算。说教法和学法

1.把握知识的前后承接,促进知识的迁移。

在以前的教学中,教材对加法结合律做了一些铺垫。例如,学生通过100以内进位加法的凑10思路的学习及100以内加法中小括号的学习,使学生对加法结合律有了一些感性的认识,这些都是学习加法结合律的基础。本册教材的安排是先教学加法的运算定律,再教学乘法的运算定律;先教学交换律,再教学结合律;先教学运算定律的含义,再教学运算定律的应用。这样安排有三个好处:首先是由易到难,便于教学。交换律的内容比结合律简单,学生对交换律的感性认识比结合律丰富,先教学比较容易的交换律,有利于引起学生探索的兴趣。其次是能提高教学效率。交换律的教学方法和学习活动可以迁移到结合律,加法运算定律的教学方法和学习活动可以迁移到乘法运算定律,迁移能促进学生主动学习。再次是符合认知规律。先理解运算定律的含义,再应用运算定律使一些计算简便,体现了发现规律是为了掌握和利用规律。

2.引导学生积极参与,经历知识的形成过程,提高运算的灵活性。《数学课程标准》指出“让学生经历有效的探究过程”。教学中以学生为主体,激励学生动眼、动手、动口,积极探究问题,促使学生主动参与“列式计算——观察思考——猜测验证——得出结论”这一教学知识研究的基本过程。学生自己想,自己说,自己得出规律,积极主动地探究活动,充分体现了学生的主体地位。

《加法结合律》教学设计

李维娥

授课时间:3.20 课题:加法结合律 课型:新授课

教学方法:自主探究 合作探究 教具:课件 教学目标:

知识与技能

1.理解和掌握加法结合律,并能用字母和符号表示。

2.初步学习用加法结合律进行简便运算,提高学生的运算能力。过程与方法

1.通过解决实际问题,发现并概括加法结合律,提高概括能力和语言表达能力,体会概括和建模思想的应用,培养学生的符号感。

2.在探究运算定律的过程中充分利用学生已有的知识基础,促进知识的迁移。

情感、态度与价值观

1.引导学生发现知识的内在规律,激发学生的学习兴趣。2.感受数学与现实生活的联系,能用所学知识解决简单的实际问题,激发学生学习数学的兴趣。

重点:理解并掌握加法结合律。

难点:灵活运用加法结合律进行简便运算。教学步骤:

一、复习旧知,导入新课。

上节课我们学习了加法的一种运算定律叫——加法交换律,谁来说说什么叫加法交换律?这节课我们继续探究加法运算定律

先看几道口算题:

25+75 36+64 58+42 77+23 86+14 18+82

二、探究规律,总结定律。

1.出示例2情境图:你们发现了哪些数学信息?能提出什么问题?

生:观察情境图,寻找题中的数学信息,并提出问题。2.组织学生独立列式计算,并说说先求什么,再求什么。(教师巡视,找两名列式不同的学生回答)

生;尝试独立列式并说说先求什么,再求什么。3.提问:○里应该填什么符号?(88+104)+96○88+(104+96)

生:计算结果,发现并回答两道算式的得数相同,○里应该填“=”。

4.引导学生观察算式,比较相同点与不同点。相同点:三个加数相同,前后位置相同,得数也相同。不同点:运算顺序不同。第一道算式括号在前,表示先把前两个数相加,再和第三个数相加;第二道算式括号在后,表示先把后两个数相加,再和第一个数相加。

5.引导学生比较下面两组算式,并提出问题:你们有什么发现?(69+176)+28○69+(176+28)155+(145+207)○(155+145)+207.计算两组算式,与同桌交流后汇报发现: 三个加数相同,运算顺序不同,得数相同。师生共同总结加法结合律,并用字母表示。[教师板书:(a+b)+c =a+(b+c)] 生:观察等式,总结规律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这叫做加法结合律。

三、巩固练习,应用反馈。1.课件出示:根据加法结合律填空

2.课件:下面算式分别运用了哪些运算定律? 3.课件:填表 4.课件:连线 四:课堂小结:

通过学习,经历加法结合律的发现过程,理解掌握了加法结合律的运用,初步感知加法结合律的价值意义——它可以使我们的计算更加简便。

五:板书设计:

加法结合律

(a+b)+c = a+(b+c)

三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这叫做加法结合律。

第五篇:加法结合律—教学设计

加法结合律—教学设计

--董道玉

教学内容:本册教材第49~50页例3、4、5,练习十一第5~8题。教学目的:使学生理解并掌握加法结合律,能够应用加法交换律和结合律进行简便计算,培养学生分析推理的能力。

教学过程:

1.复习

(1)根据运算定律在下面的()里填上适当的数。

35+()=65+()()+147=()+274

56+74=()+()a+200=()+()

订正时,让学生说出根据什么运算定律填数。

(2)下面各等式哪些符合加法交换律?

270+380=390+260 30+50+70=30+70+50

a+800=800+a□+△+○=○+□+△

(3)四年级一班有48人,二班有50人,两个班一共有多少人?(计算完了,要求学生应用加法的意义说明为什么用加法计算。)

2.新课

(1)出现两组算式,引导学生比较,加以概括。

我们再观察一组算式,它们有什么样的关系?

(12+13)+14○12+(13+14)

先算一算,两个算式的结果怎样?用什么符号连接?

那么,这组算式说明了什么?

学生回答后教师归纳整理:

12、13和14这三个数相加,先把12和13相加,再同14相加;或者先把13和14相加,再同12相加,它们的和不变。

再观察下面一组算式,它们有什么样的关系?

(320+150)+230○320+(150+230)

这组算式说明了什么?

(2)比较这两个等式,归纳出一般规律。

现在观察这两个等式,比较一下它们有什么相同的地方呢?(先让学生发言。)

教师引导学生归纳,突出以下三点:

①这两个等式中,每组算式有几个加数?(3个加数)两个等式中的加数都一样吗?

②这两个等式中,等号左边两个算式有什么共同点?(加的顺序相同,都是先把前两个数相加,再同第三个数相加。)

③再看等号右边两个算式有什么共同点?(加的顺序也相同,都是先把后两个数相加,再同第一个数相加。)

那么等号左边的算式和等号右边的算式,加的顺序相同吗?但它们的和呢? 现在谁能把我们所发现的规律完整地说一说?

几个学生试说后,教师完整地叙述一遍,说明这一规律叫做加法结合律。再看看书中的结语。

(3)用字母表示加法结合律。

谁能用符号(任意选3个符号)表示加法结合律?

如:(□+△)+○=□+(△+○)

如果用字母a、b、c分别表示3个加数,怎样表示加法的结合律呢? 学生回答后板书:(a+b)+c=a+(b+c)

这里a、b、c表示的数是什么范围的数?(整数)

等号左边(a+b)+c表示什么意思?

(先把前两个数相加,再同第三个数相加。)

等号右边a+(b+c)表示什么意思?

(先把后两个数相加,再同第一个数相加。)

(4)做一做。

第50页的“做一做”,填在书上。

订正时,让学生说一说根据哪个运算定律填写的。

(5)加法结合律的应用。

出示例4,480+325+75,想一想:怎样计算比较简便?应用了什么运算定律?共同讨论。

教师板书:480+325+75

┈┈┈┈┈┈┈┈┈┈┈

┊ =480+(325+75)┊←指出应用加法结合律,计算时方框里的这一步可以不写。

┈┈┈┈┈┈┈┈┈┈┈

=480+400

=880

出示例5,325+480+75,怎样计算比较简便?应用了什么运算定律?学生试算后,讨论订正。

教师板书:325+480+7

5┈┈┈┈┈┈┈┈┈┈┈┊ =325+75+480┊←指出应用加法交换律。┊ =(325+75)+480 ┊←指出应用加法结合律。┈┈┈┈┈┈┈┈┈┈┈=400+480=880

比较例

4、例5,让学生说一说在应用运算定律方面有什么不同?

教师小结:例4没有调换加数的位置,只应用加法结合律先把后两个数相加就可以使计算简便。而例5,要使325和75相加,必须先应用加法交换律把75调到480的前面,再应用加法结合律把325和75相加,才能使计算简便。然后启发学生说出例5也可以应用加法交换律把325调到480后面,再应用加法结合律把325和75相加,使计算简便。

想一想:过去哪些计算中应用了加法结合律?

学生如想不出,再提出:口算加法是怎样应用的? 如9+8怎么想?9+8=9+(1+7)

17=(9+1)+7

36+48怎么想?36+(40+8)=(36+40)+8

应用加法结合律不仅可以做口算加法,还能使一些计算简便。订正“做一做”时,让学生说出是怎样应用运算定律的。

3.巩固练习

练习十一第5、6、7题,做完后共同订正。

4.布置课外作业

练习十一第8题。

    版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

    本文地址:https://www.feisuxs.com/wenku/jiaoxue/9/2223079.html

相关内容

热门阅读

最新更新

随机推荐