首页 > 文库大全 > 教学资源 > 教学心得体会

《分式的乘除》教学反思(通用)[5篇材料]

《分式的乘除》教学反思(通用)[5篇材料]



第一篇:《分式的乘除》教学反思(通用)

《分式的乘除》教学反思(通用5篇)

在不断进步的时代,我们要在教学中快速成长,所谓反思就是能够迅速从一个场景和事态中抽身出来,看自己在前一个场景和事态中自己的表现。怎样写反思才更能起到其作用呢?下面是小编精心整理的《分式的乘除》教学反思(通用5篇),欢迎大家分享。

《分式的乘除》教学反思1

在上节课介绍了分式的乘除运算法则的基础上介绍了分式的混合运算以及整式和分式的混合运算。并通过思考栏目中的问题,根据乘方的意义和分式的乘法法则,归纳出分式的乘方法则。

学生有了分式的乘除运算法则做为基础,很容易探究出并掌握住乘除混合运算的计算方法。有乘方的意义和分式的乘法法则做基础,学生很容易探究出分式的乘方运算法则。

本节课各个环节我紧紧围绕学习目标展开,让学生在每个环节学完后都要进行反思、反悟,感觉效果较好

分式的乘除以及乘方混合运算,是《分式》一章中的重要内容,在考试中常以计算题的面貌出现,在学生做习题时,我想平时都是老师来看,讲评,这次我何不把主动权还给学生,我就想让学生做小老师,一批学生做好题目,再让一批学生上去批改,如果错的,直接让他把正确的做在旁边,这样既调动了学生的积极性,又使同一组题让更多的学生参与进来。

教学中我发现分式的运算错的较多。分解因式的熟练程度成了这里的障碍。我知道。分解因式的好坏直接影响分式的有关学习。

总之,通过对上课方式的尝试,我从学生身上学到了很多东西。也促使我更加对课堂进行研究。

《分式的乘除》教学反思2

本节课的乘除法是分式基本性质的应用,在此基础上类比小学学过的分数的乘除法运算法则进行学习分式的乘除运算,学生不难接受。

只是需注意的是,分式乘除运算的结果要化为最简分式。在教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘除法的运算方法,提示学生分式的乘除法法则与分数的乘除法法则类似,要求他们用语言描述分式的乘除法法则。学生反应较好,能基本上完整地讲出分式的乘除法法则。

在分式运算的中,学生主要出现以下问题:

1、分式的乘法,如:运算方法有两种:一种是先乘后约分,另一种是先约分再乘,特别是多项式的时候更明显一些,学生不能很好的选择恰当的方法进行计算,从而使计算变得复杂,导致计算错误,计算结果要求必须为最简分式。

2、分式的加减法,有些学生总是在通分的时候忘记给分子乘代数式;再有就是遇到减法,而且后面分式的分子是多项式的时候,总是会出现符号上的错误(忘记变号),使得后面的计算全部错误。还有一部分同学在进行分式加减法的时候会和解分式方程相混淆,给分式去分母,还有得学生计算时把分母都漏掉了。

3、学生做题很不细心,也没有养成检查习惯。

针对以上问题,除了在讲清运算原理之外,要加强练习,针对学生的错误点反复训练,让学生真正掌握,提高学习效率。

《分式的乘除》教学反思3

学生前面已学习了分式的基本性质、分式的约分,对学好本课时内容有一定的帮助。八年级学生有一定逻辑推理能力、代数式的运算的能力。但数与式的差别也制约着学生的学习,特别是分子、分母为多项式的乘除法运算是学生学习的'一个难点。

在分式的乘除法这一课的教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘除法的运算方法,提示学生分式的乘除法法则与分数的乘除法法则类似,要求他们用语言描述分式的乘除法法则。学生反应较好,能基本上完整地讲出分式的乘除法法则。

利用类比的数学方法教学分式的乘除法教学,学生理解并不难,但在运算上要以练为主。

1、学生对于法则的运用不难,但是基础较差班学生在运用法则计算时遇到单项式乘单项式,单项式乘多项式或多项式乘多项式即整式的乘法运算时,情况较差,另外在结果的化简上存在问题,化简意识不够,应该在复习分数的乘除法时复习分数的约分,通过对分数的约分类比分式的约分,加强化简意识和能力。还有因式分解的基础知识不扎实,这些直接影响这节课的学习,这充分体现了数学知识是相关相联的,所以课前有必要巩固整式的乘法运算和因式分解这两方面的知识,进行有针对的练习。

2、类比的学习方法是学习新知识的好方法。

《分式的乘除》教学反思4

这堂课是以学生探究为主的一堂新授课。

一、教材处理

分式乘除法类比分数乘除法,这样安排符合学生的认知规律。

二、教法学法

对于这堂课,我打破了传统教学的教师讲、学生练的教学模式,取而代之的是学生自学、主动探究的教学方式。自学检测明确了法则,达到了预计的目标,分层训练完全超出了我的预计,效果非常好。学生在探究过程中,易错点都找得挺准。整个教学过程从多角度对分式的乘除法进行了训练,避免了教师一种讲法部分学生不理解的尴尬,既调动了学生探究的积极性,又有利于学生对知识的理解和吸收。

三、不足之处

1.对基础差的学生关注不够,他们在合作探究的过程中遇到的困难会很多,可是由于在课堂上需要面对的是大多数学生,另外在课堂上时间也是一个原因,如果是小班型授课这个问题就解决了。

2.对于错误的处理方法需要完善,在以后的教学中要鼓励学生发现错误、纠正错误。兵无常势,水无常形。合学教育必须调动学生的积极性,体现学生的主体地位,让他们通过协作获得双赢。

《分式的乘除》教学反思5

《分式的乘除法》这是八年级下册第十六章第二节的内容。主要学习的是分式的乘除法运算法则并会进行简单的应用。

本节课首先通过创设学生熟悉的问题情境,很自然的引入分式乘除法的运算:在运算律和运算法则的探究过程中,引导学生由分数的运算法则探究出分式的运算法则,利用练习加深理解:在分式的乘除运算教学过程中,从不同侧面引导学生巩固新知、提高计算能力。这节课重点是熟练掌握分式的乘除法则,教学设计提供给学生一个探索、思考与同伴交流合作的机会,学生通过对比观察,动脑思考对新旧知识进行联系探究,很自然地学习了新知识,本课设计充分体现了以学生为主体的教学方式,学生逐步探讨发现,通过学习既训练了猜想、归纳、表达能力,又提高了应变能力。

上完这节课后我认真的做了反思:

1、选取学生熟悉的分数的乘除运算问题,用类比的思想方法学习归纳出分式乘除法的运算法则,学生感到轻松容易的掌握了分式乘除法的运算,激发了学生的学习兴趣。

2、针对本节课内容我设计一系列有梯度的问题,并采取讨论形式。课堂气氛活跃,学生学习热情比较高。课堂学习效果较好。

3、课堂训练过程中采取生生合作,学生出现的计算问题由学生改正并说明理由,一个没将问题找完,另一个再找,直到连细节学生也不放过。课本上有些问题的答案不唯一,学生从不同的角度考虑问题,结论当然不同,只要有道理就应鼓励,不要把学生限制在一个固定的思维框中。

4、存在的问题:

(1)由于部分学生计算能力欠缺,或有些细节没注意到,计算上还出现问题。在以后的教学中还应加强计算能力的培养。

(2)时间安排不是太恰当,学生帮助学生解决问题时耽误了一些时间,导致最后设计的环节没完成。以后还应加强细节的设置提高课堂效率。

(3)学生答题的规范性还差了些,在黑板上的板书不到位,在以后的教学中加强学生的答题规范性练习。

(4)数学学习方法的应用,本节课用到转化、猜想、归纳的数学方法,以后在教学中提醒学生数学方法的应用。

5、学生能力的培养,创设良好的问题情境,强化问题意识,激发学生的求知欲;培养学生敢于独立思考,敢于探索、敢于质疑的习惯;培养学生善于观察的习惯和心里品质;培养学生良好的思维习惯,教会学生在多方面思考问题,多角度解决问题的能力。

6、教学效果还有些欠缺,争取以后在课堂上让学生思维活跃,气氛热烈,学生受益面大,不同程度学生在原有的基础上都有进步。知识、能力、情感目标都能达到,让学生学的轻松,积极性高,当堂问题当堂解决。

第二篇:《分式的乘除》教学反思

《分式的乘除法》教学反思

本节课的重点是分式乘除法的法则及应用,难点是分子、分母是多项式的分式的乘除法的运算。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。

在教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘除法的运算方法,提示学生分式的乘除法法则与分数的乘除法法则类似,要求他们用语言描述分式的乘除法法则。学生反应较好,能基本上完整地讲出分式的乘除法法则。

教学后的启示:

学生对于法则的运用不难,但是较差班级的学生在运用法则计算时遇到单项式乘单项式,单项式乘多项式或多项式乘多项式即整式的乘法运算时,情况较差,另外在结果的化简上存在问题,化简意识不够,应该在复习分数的乘除法时复习分数的约分,通过对分数的约分类比分式的约分,加强化简意识和能力。还有因式分解的基础知识不扎实,这些直接影响这节课的学习,这充分体现了数学知识是相关相联的,所以课前有必要巩固整式的乘法运算和因式分解这两方面的知识,进行有针对的练习。

第三篇:分式的乘除教学反思

今天,分裂的最后一个部门的自我反思的教学:学生在前几个阶段学习的小分数的基本特征,并且在上个学期也已经学习因素分解,本课中乘法和除法是应用分数的基本性质。在此基础上,小学的分数的乘法和除法已经用于计算学生的分数乘法和除法。应当注意,分数乘法和除法运算的结果被减少到最简单的形式。

八年级学生具有一定的逻辑推理能力,代数计算能力,主动探索学习风格的知识也初步形成,七年级学生开始进行四组合作学习,因此使用数学活动容易动员学生学习兴趣,例如,对于本课的内容我设计了一系列梯度问题,并采取团体合作的形式,积极的教室气氛,学生学习积极性相对较高,课堂学习效果很好。但是约束的数量和类型之间的差异也影响学生的学习,特别是分子,多项式乘法和除法的分母是一个难学的学生。

在教学中,我使用类比法,以便学生回忆先前学习的乘法和除法运算方法的分数,表明学生乘法和除法法的乘法和除法律 的热情,也是同一组的问题,让更多的学生参与,从而提高学生的主动性。

存在的问题:(1)由于一些学生缺乏计算能力,或者一些细节没有注意到,有计算上的问题。在未来的教学中还应加强对计算能力的培训。(2)课程安排不是太适当,学生帮助学生解决问题时延迟一段时间,导致最终设计的链接没有完成。未来还应加强设置的细节,以提高课堂效率。(3)学生的标准回答了一些穷人,在黑板上的黑板上没有到位,在未来的教学中强化学生回答规范实践。(4)应用数学学习方法,将本课程转化为推理,推理,数学方法的归纳,教学后提醒学生应用数学方法。

第四篇:分式乘除教学设计

《16.2 二次根式的乘除》教学设计

一.教材分析

二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.

基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.

二、学情分析

本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.

本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.

三、目标和目标解析

1.教学目标

(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;

(2)会进行简单的二次根式的除法运算;

(3)理解最简二次根式的概念.

2.目标解析

(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;

(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.

(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.

四、教学过程设计

1.复习提问,探究规律

问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?

师生活动 学生回答。

【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.

2.观察思考,理解法则

问题2 教材第8页“探究”栏目,计算结果如何?有何规律?

师生活动 学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:

问题3 对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?

师生活动 学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了.

【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误.

问题4 对例题的运算你有什么看法?是如何进行的?

师生活动 学生利用法则直接运算,一般根号下不含分母和开得尽方的因数.

【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算.

问题5 对比积的算术平方根的性质,商的算术平方根有没有类似性质?

师生活动 学生类比地发现,商的算术平方根等于算术平方根的商,即.利用该性质可以进行二次根式的化简.

3.例题示范,学会应用 例1 计算:(1);(2);(3).

师生活动 提问:你有几种方法去掉分母中的根号?去分母的依据分别是什么?

再提问:第(2)用什么方法计算更简捷?第(3)题根号下含字母在移出根号时应注意什么?

【设计意图】通过具体问题,让学生在实际运算中培养运算能力,训练运算技能,问题5 你能从例题的解答过程中,总结一下二次根式的运算结果有什么特征吗?

师生活动 学生总结,师生共同补充、完善。要总结出:

(1)这些根式的被开方数都不含分母;

(2)被开方数中不含能开得尽方的因数或因式;

(3)分母中不含根号;

【设计意图】引导学生及时总结,提出最简二次根式的概念,要强调,在二次根式的运算中,一般要把最后结果化为最简二次根式.

问题6 课件展示一组二次根式的计算、化简题.

【设计意图】让学生用总结出的结论进行二次根式的运算.

4.巩固概念,学以致用

例2

师生活动 提问 本题是以长方形面积为背景的数学问题,二次根式的除法运算在此发挥什么作用?

再提问 章引言中的问题现在能解决了吗?

【设计意图】巩固性练习,同时培养学生应用二次根式的乘除运算法则解决实际问题的能力。

5.归纳小结,反思提高

师生共同回顾本节课所学内容,并请学生回答以下问题:

(1)除法运算的法则如何?对等式中字母的取值范围有何要求?

(2)你能说明最简二次根式需要满足的条件吗?

6.布置作业:教科书第10页练习第1,2,3题;

教科书习题16.2第10,11题.

五、目标检测设计

1.在、、中,最简二次根式为 .

【设计意图】考查对最简二次根式的概念的理解.

2.化简下列各式为最简二次根式: ; .

【设计意图】复习二次根式的运算法则和运算性质.鼓励学生用不同方法进行计算.对于分母含二次根式的处理,要结合整式的乘法公式进行计算.

3.化简:(1);(2).

【设计意图】综合运用二次根式的概念、性质和运算法则进行二次根式的运算.

第五篇:分式的乘除教案

分式的乘除 重点:会用分式乘除的法则进行运算。难点:灵活运用分式乘除的法则进行运算。

一、例题分析

(P17)例4.计算

[分析] 是分式乘除法的混合运算.分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算

3ab28xy3x()322xy9ab(4b)(1)3ab28xy4b()329ab3x(先把除法统一成乘法运算)=2xy3ab28xy4b23 =2xy9ab3x(判断运算的符号)

16b23 =9ax(约分到最简分式)

2x6(x3)(x2)(x3)23x(2)44x4x

2x61(x3)(x2)23x =44x4xx3(先把除法统一成乘法运算)2(x3)1(x3)(x2)2x33x =(2x)(分子、分母中的多项式分解因式)2(x3)1(x3)(x2)2(x3)=(x2)x3 =2x2

二、课堂引入

1.出示P13本节的引入的问题1求容积的高

vm,问题2求大拖拉机的工abnab作效率是小拖拉机的工作效率的倍.mn[引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.2.P14[观察] 从上面的算式可以看到分式的乘除法法则.3.[提问] P14[思考]类比分数的乘除法法则,你能说出分式的乘除法法则?

类似分数的乘除法法则得到分式的乘除法法则的结论.三、例题讲解

P15例2.[分析] 这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.P15例.[分析]这道应用题有两问,第一问是:哪一种小麦的单位面积产量最高?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是500、500,还要判断2a1a12出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a>1,因此(a-1)2=a2-2a+1

计算

22c2a2b22(1)(2)n4m3(3)y abc2m5n7xx2(4)-8xy2y(5)2a45xa21(6)y26y9(3y)2a2a1a4a4y2

五、课后练习

六、课堂小结

相关内容

热门阅读

最新更新

随机推荐