首页 > 文库大全 > 教学资源 > 课件

四年级数学下册《交换律》说课稿(精选合集)

四年级数学下册《交换律》说课稿(精选合集)



第一篇:四年级数学下册《交换律》说课稿

四年级数学下册《交换律》说课稿

作为一位优秀的人民教师,时常需要编写说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那么写说课稿需要注意哪些问题呢?下面是小编为大家收集的四年级数学下册《交换律》说课稿,欢迎阅读与收藏。

四年级数学下册《交换律》说课稿1

一、说教学目标

1、理解加法交换律和乘法交换律的含义,能用字母式子表示加法交换律和乘法交换律。

2、经历交换律的探索过程,体会观察发现、猜测验证、归纳概括的数学学习方法,发展合情推理能力。

3、在自主探究、合作交流的过程中,体会数学研究的乐趣。

确定上述教学目标的依据:一是对课程标准的理解:《数学课程标准(xxxx版)》学段目标:掌握必要的运算技能;在观察、实验、猜想、验证等活动中,发展合情推理能力。《义务教育数学课程标准(xxxx年版)》在“课程内容”的第二学段中提出:“探索并了解运算律,会应用运算律进行一些简便运算”“经历与他人交流各自算法的过程,并能表达自己的想法”。

二、对教材的把握

教材在第一单元教学四则运算的意义及混合运算的基础上,安排了本单元的教学。本单元学习的五条运算定律,被誉为“数学大厦的基石”,不仅适用于整数的加法和乘法,也适用于有理数、实数甚至复数的加法和乘法,在教学中具有重要的地位和作用。加法交换律和乘法交换律无论在形式上还是探索方法上都存在相同和相似的地方,而我们通过用人教版的教材教,发现加法交换律和结合律放在一课时教学,学生很容易产生混淆,其原因用奥苏贝尔认知结构变量来解释,在学习结合律的时候,学生对刚刚概括出的交换律认识还不是很清晰,原有知识的与新知的之间的可分辩性不强,不仅影响了新概念的建立,连对交换律本身的认知都模糊了。因此我在教学这单元之前,综合吸收了北师大教材的编排意见,将加法交换律和乘法交换律放在一课时教学。

三、对学情的分析

对于数学运算定律,学生在前面的学习中,已经有广泛的接触,已经在不知不觉中认同了这两个规律。本单元的学习,更多是结合学生已有的经验,从具体数据的讨论,上升到规律的发现和归纳,最终形成教学模型。因此教学时,没有从具体情境中入手,直接从数学算式展开研究,主要让学生经历发现问题、提出问题的过程。鉴于四年级学生的认知特点,解释运算定律的内在含义对于他们来说比较抽象。因此,在理解运算定律内涵时,还离不开意义的支撑,需要以具体情境中的实例作为依托。

【教学重难点】:通过观察、猜测、验证、归纳概括出加法和乘法交换律,发展合情推理能力。

四、说教学过程

为了实现学生主体地位和教师主导作用的和谐统一,有效达成教学目标,我设计了以下教学活动。

(一)口算比赛,引入课题

在比赛中激起认知冲突,唤起对加法交换律的已有认知经验。

(二)结合实例,探究规律

1、观察发现,质疑引思。

2、举例验证,得出结论。

【课标指出,学生应当有足够的时间和空间经历观察、实验、猜测、推理、验证等活动过程。】通过观察算式,经历从特殊到特殊的类比推理和从特殊到一般的归纳推理,发现加法交换律和乘法交换律,并尝试描述所发现的运算规律。经历这个过程,其实就是发现问题和提出问题的过程。提出问题有两种方式:一是用语言描述,二是用字母表示。这个环节要求尝试用语言描述规律,提出数学命题。在引导学生通过比较全面的大量例子来验证结论,在观察、实验、猜测、验证的活动过程发展合情推理能力。

3、解释定律模型的正确性。

【在教学中对运算定律的.探究一般是引导学生采用不完全归纳法来进行的,但不完全归纳法与严格证明有着本质的区别。因此,在引导学生采用不完全归纳法抽象概括运算定律后,从运算意义的角度理解定律模型的正确性,更加深入地掌握运算定律的本质意义。】

4、唤起原有经验,同化旧知。建构主义学习论认为,学生的学习时认知结构的不断通话和顺应的过程中达到平衡的过程,回顾学习经历中加法交换律,乘法交换律的不露声色的反复呈现,使学生体会到今天的学习内容并不陌生,通过梳理,发现交换律解释了原有学习中的这类现象,使原有认知顺应今天所学的内容,使学生的认知结构得到完善和补充。

(三)知识应用,巩固提升

适量的练习是巩固知识的有效手段,本课的练习自始至终贯穿在知识探究的过程中,运用加法交换律的研究方法继续研究另外三种运算中是否存在同样的定律,既是规律的探究、提炼,同时也是对本课的数学学习方法的巩固。同时大量的加法和乘法的计算,学生的思考和说理贯穿了整个学习活动,对规律的符号化与练习融为一体,减轻学生负担。

(四)回顾反思

借助适当的反思帮助学生完善认知结构,唤醒学生对数学方法乃至数学思想的感悟,升华情感体验。

五、说教学方法

《数学课程标准》(xxxx版)指出:教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。因此,针对教学难点,教学时采用引导发现法,启发式教学法,用启发性的问题,引导学生经历观察现象、发现规律、提出证猜想、举例验证、得出结论、解释现象的过程。

六、说学法指导

为了使学生经历一个主动的和富有个性的学习过程,着重指导学生采用观察发现、举例验证、类比归纳法的学习方法,以独立思考、自主实践、合作交流的方式进行新知建构。在观察发现、验证猜想、概括结论、解释应用的过程中发展数学思考能力,体会数学思想,积累数学活动经验。

四年级数学下册《交换律》说课稿2

一、教材说明

1、教学内容。

“加法交换律”是人教版《义务教育课程标准实验教课书⊙数学》四年级下册第27 —28页的内容。主题图呈现的是李叔叔骑车去旅游,今天上午骑了40千米,下午骑了56千米。问:今天一共骑了多少千米?可列出40+56=96(千米)或56+40=96(千米)两个算式,引导学生观察两个算式得数相等,可以用“=”连接,然后再举出一些这样的例子,进而发现加法交换律,再用字母表示加法交换律。

2、加法交换律在数学学习中的作用。

《课程标准》指出:数学中,研究数地运算,在给出运算的定义后,最主要的基础工作就是研究该运算的性质。在运算的各种性质中,最基本的几条性质,就是“运算定律”,可见,运算定律在数学中的地位和作用,是“数学大厦的基石”,而“加法交换律”可能更是基石中的基石。

加法交换律的内容比较简单,学生在以前的学习过程中都有过浅显的认知基础,只是没有明确的概括,本节课的教学很大程度上是要将学生以前比较零散的感性认识经过整理、明晰后上升为理性认识,因此,学生学起来比较容易。但是用符号或字母表示加法交换律,则是学生认识上的一个难点,因为这是学生第一次接触从研究确定的数到用字母表示一般的数,比较抽象,理解起来也比较困难,所以在设计本节课时我更多的想的是,如何让学生自然地经历由用数到用字母表示的知识形成的过程,让学生在理解、感悟、体验中感受字母表示的优越性,从而为后面的其他运算定律的教学,以及正式教学“用字母表示数”打下基础。

3、教学目标。

有了上面的想法,我把本课的教学目标定为:

(1)使学生经历探索加法交换律的过程,理解并掌握加法交换律,初步感知加法交换律的价值,发展应用意识。

(2)经历加法交换律逐步符号化,形式化的过程,使学生初步感受用字母表示运算定律的优越性,培养学生的符号感以及应用符号解决问题的意识。

(3)使学生经历“形成猜想、举例验证”的完整、真实的过程,感悟数学研究的一般方法。

4、教学重点:使学生理解并掌握加法交换律。

5、教学难点:会用个性化的符号或字母表示加法交换律。

二、设计意图

设计本节课时,我一直在思考:

我思考——教师怎么引导学生去探究、发现、总结规律?

我思考——“加法交换律”是不是应该“浓墨重彩”去渲染? 交换两个加数的位置,和不变,学生在一年级的时候就会,只是比较零散,没有系统的表达,这样的活动是不是教者自娱自乐、自作多情?

我思考——既然本课的难点是学生会用个性化的符号或字

母表示加法交换律。怎么引出字母表示式?是像旧教材上在总结出加法交换律后,直接出示还可以用字母表示α+b=b+α,还是让学生经历“具体的数——个性化的符号——学会数学的表示”这一逐步符号化、形式化的过程?

我思考——我们的小学数学教学是否应该不仅关注“是什么”和“怎样做”,还应该引导学生去猜想、去探究“为什么”和“为什么这样做”?这样是不是才能够凸显出“数学是思维的体操”这一学科特色?是不是应该带领学生经历从现象到本质的探究过程,促使学生养成研究问题的良好意识?“问题是数学的心脏”,我们数学老师是否可以给学生一个问题模式,让学生“知道怎样思维”,让学生感悟一些数学研究的一般方法?

我一直在思考……

三、教学程序

本节课分四部分教学。

(一)口算练习,引发猜想。

考虑到,我上课时已经是第三节课,学生的精力不是很充沛,而教材上的主题图也不是很吸引学生,所以我干脆撇开主题图,采用直接进入法,上课铃一响,我就直奔主题:“听说咱们班同学的口算能力特别强,敢不敢挑战一把?比一比谁的口算能力强!”随即出现一组口算题:

8+9= 18+7= 30+17=

9+8= 7+18= 17+30=

学生一边做,我一边问:“猜一猜,下一题会是什么?”这样做,不仅调动了学生的学习积极性,还在不知不觉中让学生初步感知到交换两个加数的位置,和不变的规律。此时,我适时问:“你想说点什么?”学生可能还不会用完整的语言概述,只要有所感悟就可以了。

(二)探究新知。

在新课教学中,共分4个环节进行。

1、举例说明。

在第一个环节之后,我以:“这样的题目,你会考考大家吗?”

为题接着让学生出题,根据学生的题目,我有选择地板书,这样的设计,一是想唤起学生对已有知识的回忆,而且还培养了学生的观察、模仿能力,同时也为下一环节概括“加法交还律”打下坚实的基础。

2、概括规律。

“观察这些算式,你发现了什么?把你的发现和周围的同

学交流交流。”学生在做了大量的口算题后,急于想表达、想交流,这时的同桌交流就满足了他们的愿望,然后再在全班交流,进而组织学生用比较准确的语言概括出加法交换律,并板书出课题——加法交换律,“同学们总结出的,就是加法的一个运算定律——加法交换律,在加法交换律中变的是两个加数的——位置,不变的是——和”。不仅使学生感受到规律的普遍性,完善了学生的认知结构,还渗透了“变”与“不变” 辩证关系。

3、个性展示。

《课程标准》把发展学生的符号感作为义务教育阶段的一

个重要的数学学习内容。于是在上一个环节中,我继续让学生举例,通过大量的实例,使学生发现这样的例子有很多,总也举不完,再用特定的数已经满足不了这种需要,造成了学生的认知冲突。“怎样表示出所有的例子呢?”启发学生探究新的表达方式,激起学生强烈的探究欲望。紧接着组织学生先在小组里说说自己是怎么想到这样的表达方式的,然后把用不同的符号或字母表示的式子写到黑板上,并追问“为什么可以这样表示?每一个符号或字母表示什么数?”待全部汇报完后,再把这些个性化的符号、字母表示的加法交换律和用具体的数以及语言文字表示的进行比较,让学生谈谈有什么感受?这样,就使学生从具体的情境中抽象出变化规律,发展了学生的符号感,同时使学生感受到用字母表示的优越性,还使学生获得了成功的体验。

4、统一字母。

在学生板书出大量的用不同的符号或字母表示的加法交换律后,我向学生说明,为了沟通和交流的方便,数学上通常把加法交换律用α+b=b+α表示,再一次比较,再一次让学生谈感受,使学生体会到用字母表示运算定律简单、明了。

四、巩固应用

用一组基础练习,强化学生对新知识的掌握,其中25+69+75=25+()+()一题,既能检验新知,又能使学生初步感知应用运算定律可以使计算简便。

在判断是否应用了加法交换律的练习中,254+100=100+254 的出现,会再一次使学生产生认知冲突,“同样是等式,为什么不是应用的加法交换律?”强化对新知的理解。

35×7=7×35题的设计目的在于再一次激发学生的思维,是应用的加法交换律吗?如果不是,又是什么呢?

五、类比拓展

在上一环节的基础上,继续引发学生思考,不是用到加法交换律,是什么呢?由此引出减法、除法、乘法中是否也有交换律?启发学生想到用刚才举例验证的办法,来验证自己的猜想是否成立。使学生明白从个别特例中形成猜想,并举例验证,是一种获取结论的方法;但有时,也可以从已有的结论中通过适当变换、联想,形成新的猜想,进而形成新的结论。使学生经历“形成猜想、举例验证”的完整、真实的过程,感悟数学研究的一般方法。

第二篇:四年级数学下册 《加法交换律》教学反思

四年级数学下册 《加法交换律》教学反思

选择这个内容中作为赛课内容,我是考虑再三的,也是没有什么更合适的内容的情况下选择的。首先,它是一个计算为主的内容,而计算教学历来都是比较枯燥的,没有多少的趣味性,再次,这个内容看似简单,加法交换律不就是:交换两个加数的位置,和不变吗?所以,上好这个内容还是很具有挑战性的,总算还是成功了。

本节课注重培养学生的创新意识和实践能力。整个过程学生从已有的知识经验的实际状态出发,通过质疑、猜想、例证、观察、交流、归纳,亲历了探究加法交换律和乘法交换律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感

首先是引入环节,好的开头是成功的一半。那么如何引入,才能在课的开始就能激起学生的学习热情?我说,刚才老师走下来的时候,有个同学问我:老师,你什么时候去教一(4)班了?我说,没有啊,我教的是四(1)班啊,别、别、别你就别骗我了,我都看见了,你教的就是一(4)班了。同学们,这位同学是把什么和什么看错了?由此引出生活当中像这样交换以后闹笑话的事情可多了!看大屏幕:人骑马。哥哥在河边钓鱼。花猫在捉老鼠。交换以后得什么呢?学生在嫣然一笑的同时,引入到了数学:数学上有时候也不能这样换,如27,交换2和7的位置,得什么呀?能换吗?学生显而易见是懂得的。接着接着过度:是啊,不光是生活中,数学中有时候也不能随便换。这里的语言过度还是自然、恰当的。可是教师在这个时候在语言上转折,巧妙地提出本节课要学习的内容:不过,今天的这节课,老师特别想和同学们共同思考的问题是:在我们的数学上,有没有有的时候换了以后大小却不变的 呢?

这样的导入,是富有情趣的,容易引起学生的学习兴趣,同时也对本节课要学习的内容提出了质疑。

那么接下来,本节课的重点就是举例子验证:两个加数交换位置,和不变,这个数学规律。首先,通过共同计算,得出几组三组等式:7+8=8+7,26+4=4+26,12+31=31+12。

师:不过老师觉得呀,数学课堂上光会算是不够的,聪明的孩子还会思考,谁在刚才计算的过程中发现黄老师出的这主题目有什么规律?学生积极举手,都想做聪明的孩子,发表自己的看法,有个学生就说:两数相加交换位置,和不变。老师随即把这话写在黑板上,但没有标上句号。而是随即问学生,你觉得这样的例子还能找到有一些吗?只有这三组?没有还是不止?师:那你猜猜看,像这样(用手势表示)交换两个加数的位置,和不变的例子还会有多少?,学生的回答是无数。既然是无数,那问题就来了:是不是任意的两数相加交换位置,和都不变呢?学生的思维集中在了这个问题上,有效地激起学生思考问题的主动性。用举例子验证的方法来进行验证。接下来的时间,学生埋着头,静静的思考问题,希望自己能聚更多的例子。有的学生举了10个例子,有的举了3个左右。还分别举了分数的,举了一些比较大数,全班同学,把各种各样的例子合起来,是否可以说明了:交换两个加数的位置,和不变了呢?知识的形成是那样的自然而然,水到渠成。而在这个过程中,探究出了本节课学习的数学规律,是完成了教学任务,但是,我觉得更重要的是不仅仅是教会了学生知识,学生学会了用举例子验证数学规律的方法,举例子,不单单是多就可以的,而且要全面,这样才更具有说服力。我想,这一点,对学生今后的学习具有更多的帮助,数学课堂的内涵、延伸都得以有效体现。

最后,即将结束的时候又通过一个个练习题丰富了课堂,也拓展了学生的思维。第一个导问题:“你们想知道数学家是怎样说明加法和乘法的交换律的吗?你们想去看看吗?”,让学生经历下数学家的证明思想,加法用的是“集合图”,第二个练习中的思维拓展题:“()+()=()+()”,又给学生渗透了“用字母表示数”的数学思想,提高学生的符号感。

不足的地方:教师忘记强调,a和b 可以表示任意的两个数。

第三篇:四年级数学上册《加法交换律和加法结合律》说课稿

教材与学情分析

本课是苏教版小学数学第七册第七单元的第一课时,教材中采用了不完全归纳推理,安排了学生生活中最喜欢的活动项目跳绳和踢毽子,求参加活动的人数。然后让学生通过比较、讨论、观察、发现不同解法之间的共同特点,从而推导出加法交换律和加法结合律。练习中注重让学生体验运算律简便的价值,这样的安排,不仅培养了学生自主学习的积极性,同时也增强了学生应用数学的意识。本课是在学生学过的加法计算和验算的基础上进一步探究的内容,也是以后进行简便计算的基础。

说教学目标和教学重难点

根据教材内容和新课标要求,要让学生运用已有的知识,在合作交流中建构新知识,制定以下教学目标。

1、通过观察、比较和分析,归纳出加法交换律和结合律。

2、在学习过程中,理解并掌握加法交换律和结合律,并会进行运算。

3、培养学生分析、判断、推理能力,提高学生解决问题的能力。

根据教学目标和学生对数学知识的理解能力,制定:

教学重点:理解加法交换律、结合律,并能正确运用。

教学难点:通过观察和分析概括出加法交换律和结合律,并会用字母表示。

说教法与学法

主要采用引导---探究进行教学,让学生用猜想—验证进行学习说教学程序

一、故事孕伏,导入新课

录音播放故事《朝三暮四》,让学生说说听了这个故事的想法,(引出课题)

【 故事导入激发学生学习的兴趣,初步体验加法交换律,唤起求知欲,】

二、创设情境,提出问题。

出示书本情境图引入

根据提供信息,提出用加法计算的问题。

预设:1、跳绳的有多少人? 2、女生有多少人?3、跳绳的男生和踢毽的女生一共有多少人 4、参加活动的一共有多少人?

【设计意图:创设贴近学生的生活情境,让学生自由地提问,可以培养学生的发散性思维。同时学生提出的问题,作为后继探究的学习材料,符合新课程“创造性使用教材”的理念。】

三、引导探究,建构模型。

(一)、研究加法交换律

1、解决问题,初步感知。

根据问题“参加跳绳的有多少人?”学生口头列式。引导得出:两个算式的结果相同,可以用等号连接起来。板书:28+17=17+282、引发猜想,举例验证

问:是不是所有的两个数相加,交换加数的位置,和都不变呢?既然是猜想就需要验证,怎样来验证?(板书:猜想 验证)

请同学们在练习纸上举例验证猜想。学生写等式。然后交流算式,初步感知规律。[+小学教学设计网_www.feisuxs=}

3、观察等式,发现规律。

问:观察这些等式,说说它们有什么共同特点?

4、引导学生探索加法交换律的表达方式。

①教师提出:能不能用一个等式来表示我们发现的规律?同桌讨论。汇报:

预设

1:我们用数字(文字)表示

2:我们用符号表示

3:我们用字母表示

②比较表示的不同方式,提出用字母表示发现的规律比较简洁。

出示板书:a+b=b+a

指出:这样的规律就是加法交换律。(板书)

【设计意图:本环节能紧密围绕并运用问题情境,师生之间积极互动,教师引导学生自己去感知规律,发现规律,并学会用字母表示。整个过程,学生在观察中感知,在模仿中理解,在探索中发现,培养了学生的抽象括能力。】

(二)研究加法结合律

1、再次出现主题图

研究:参加活动的一共有多少人?

学生列式后,板书等式:(28+17)+23=28+(17+23)

观察比较上面算式,思考:等式左右两边什么变了?什么没变?

2、丰富表象,初构规律

完成书上的两组算式,再次比较等式左右两边的“变”与“不变。

问: 你发现了什么?

3、举例验证,确认规律

学生小组合作,进一步举例验证规律。

得出加法结合律,尝试用字母表示:板书(a+b)+c=a+(b+c)

【设计意图:围绕“变与不变”这一关键点,通过比较每组的两个算式,初步感受规律。接着再经过学生个性化的验证及交流,从而确认加法结合律并学会用含有字母的式子来表示。这样,既渗透了“猜想、验证、建模”的数学理性思想,又发展了学生分析、比较、归纳、概括的能力。】

(四)、巩固练习,拓展延伸。

1、完成“想想做做”第1题。重点讲第4个是交换和结合律一起使用

2、完成第2题,重点让学生说说后面两题两个数结合了有什么好处。比一比,谁算得快。38+76+24(88+45)+124、游戏:找朋友。

(1)哪两个同学手上的树叶的和是100?

(2)同桌一个同学说出一个数,另一个同学马上说出一个与它的和是整百、整千的数。

【设计意图 :几个层次的练习,为学生提供了具有价值的学习内容,开放学生的思维空间,提高思维含量,学生在观察辨析中比较,在思考对比中升华,促进学生灵活地理解和掌握知识。】

(五)、全课总结,引申知识

今天这节课我们学习了什么知识?你是怎样获得这些知识的?那么在减法、乘法、除法中,有没有这样的规律呢?课后大家可以继续研究。

【及时总结、巩固所学知识,重视学法总结。使学生在自己的整理总结中再次巩固了本节课的重难点。同时为学生以后的学习作好了铺垫】

第四篇:四年级下册数学《平均数》说课稿

对于本节课我将从教材分析、学情分析、教学目标及教学过程等多个方面进行阐述。首先谈谈我对教材的理解

一、教材

《平均数》是选自人教版四年级下册的内容,它是在学生认识条形统计图、并能根据统计图表进行简单的数据分析之后进行教学的。在统计中,平均数常用于表示统计对象的一般水平,它是描述数据集中程度的一个统计量,可以反映一组数据的一般情况,也可以用它进行不同组数据的比较,以看出整体之间的差别,可见平均数是统计中的一个重要概念,让学生学习习近平均数的知识,不仅是为了掌握求平均数的方法,更重要的是理解平均数在统计学上的意义及平均数在生活当中的作用。

二、学情

本节课所面对的是四年级的学生,他们已经具备平均分的基础知识,并且有初步的合作意识与合作能力。但是平均数对于学生来说是一个全新的概念,所以应着重让学生理解平均数的意义并在此基础上掌握计算平均数的方法。这就要求作为老师的我需要结合学生特点采用合适的教学手段及充分利用教具学具等资源在上课过程中给学生多加引导。

《课程标准》对这部分提出的要求是“通过丰富的实例,了解平均数的意义,会求简单数据的平均数(结果为整数)”。为此,教学中我们不能只停留在“简单地给出若干数据,让学生计算出它们的平均数”上,而应充分引导学生理解“平均数”概念所蕴含的丰富、深刻的统计与概率的背景,帮助他们认识到平均数在现实生活中的实际意义与广泛应用,并能在生活情境中运用它去解决实际问题,从而获得必要的发展。

三、教学目标

1、知识与技能目标:理解平均数的意义,初步学会简单的求平均数的方法。

2、过程与方法目标:学生经历用平均数知识解决简单生活问题的过程,积累分析和处理数据方法,发展统计观念。初步感知“移多补少”“对应”等数学思想。

3、情感态度与价值观目标:感受平均数在生活中的应用价值,体验学习数学解决实际问题的乐趣。

基于以上分析,本节课的重点难点就显而易见了,重点是XX,难点是XX

四、教学重难点

重点:理解平均数的含义,掌握求平均数的方法。

难点:借助“移多补少”的方法理解平均数的意义,并能用平均数解决一些简单的实际问题。

五、说教学方法

由于平均数意义比较抽象、难以理解,我尽量通过让学生动手操作,自主探索和合作交流的方法,创造有利于学生主动求知的学习环境。

在学法指导上,我重视观察法、比较法、发现法和讨论法等应用,充分调动学生各种感官,培养学生善于思考,并相信自己有能力找到获取新知的途径。

接下来重点说说我的教学过程设计,我把教学过程分为四环节,首先是创设情境,激趣导入环节

六、教学过程

1、创设情境,激趣导入

课程开始我会创设一个贴近学生生活实际的这样一个情境:

出示两个粉笔盒甲和乙,甲盒中有9根粉笔,乙盒有5跟粉笔,我想请同学们帮忙,怎么样才能让两个粉笔盒中的粉笔一样多?

由于这个问题本身并不难,学生进过简单思考后能很快得出只需要把甲盒中的粉笔拿一根到乙盒中。这是我会请学生代表来体会移动粉笔的这一过程。

当操作完成后我会提问:现在每个盒子中都有7根粉笔,这个7是什么数呢?

像这样把几个不同的数,通过“移多补少”的方法,得到相同的数,这个数就是我们今天要学习的平均数,让我们来一起认识它吧。

【设计意图:这样的设计从学生的生活实际入手,激发学生学习兴趣,让学生在移动粉笔的过程中初步感知平均数,在把多的分给少的过程中渗透“移多补少”的思想为后面教学打下基础,并顺利引入课题】

这样就过渡到了我的下一个教学环节

2、理解含义,探求方法

在这一环节中我首先会说,同学们,保护环境是我们每个人的责任。课外时间同学们可以留心收集矿泉水瓶,这不仅可以保护环境,还可以让废物得到再利用,为我们生活节约资源。并出示例1,小红、小兰、小亮、小明收集矿水泉瓶的统计图。

给一定时间让仔细观察统计图,你能从图中获取哪些信息?他们四个人收集的矿泉水瓶的个数一样多吗?同学们想一想,如果要求他们平均每个人收集多少个,是什么意思呢?你怎样理解“平均每人收集了多少个瓶子?”你怎样才能让他们的瓶子数量一样多呢?对于这些问题我会组织学生在小组内讨论,相互说一说,然后指名汇报。并用课件展示统计图的变化过程。

在学生理解这一动态过程后我会总结:我们通过把多的矿泉水一出来,补给少的,使得每个人的矿水泉瓶的数量一样多,这种方法叫做移多补少。利用这种方法能够求出他们四个人平均每个人收集的矿泉水瓶的个数。

为了进一步加深学生对移多补少这一方法的理解,我会再次举例:我们要求6、7、8三个数的平均数,就可以把8移1给6,这一三个数就变成了7,它们的平均数就是7。

之后我会再次提问,要求他们每人平均收集了多少个矿泉水瓶,还可以怎么想呢?把他们收集的矿泉水瓶平均分成4份,必须先求什么?预设学生能够回答要求他们一共收集了多少个矿泉水瓶,那么怎么求呢?根据学生的回答板书,并引导分成四份其实就是总数除以4,这时我会趁热打铁,顺势总结出要求平均每个人收集了多少个矿泉水瓶可以用总数量/总分数=平均数来计算。

【设计意图:这样的设计注重让学生自主探索、合作交流,通过解决平均每人收集多少个矿泉水瓶的问题,引导学生思考并理解求平均数的方法,掌握“移多补少”以及“先求和再平均分”的数学方法。体现了教师主导,学生主体这一教学理念,也让学生在有趣的教学情境中获得知识极大挑动了学生的学习兴趣】

在学生初步掌握求平均数的两种方法后,为了加深学生对平均数概念的理解我会再次呈现这样一个问题,我们通过移多补少和计算,求出平均每人收集了13个矿泉水瓶,看这个平均数13,它是不是每个人真正收集的矿泉水瓶数量?

引导学生体会13不是每个人真正收集的矿泉水瓶数量,而是4个人的总体水平。

平均收集13个矿泉水瓶,不是每个人真正收集的数量,是一个“虚拟”的数,反映了这组收集矿泉水瓶数的情况。

【设计意图:以上环节的设计很好的实现了对平均数计算方法的讲解,也让学生理解了平均数的内涵,突出重点突破难点的同时也实现了本节课的教学目标。】

在此基础上问学生在生活中你还在哪些地方或什么事情中遇到或用到过平均数吗?举例说一说。

【设计意图:这样让同学们在现实生活中寻找实例,感受数学源于生活又应用于生活,并体会学习数学的乐趣和成就感】

3、巩固提高,随堂练习

下面是四年级的4个班的学生回收废纸的情况:第一个星期回收了56千克,第二个星期回收了48千克,第三个星期回收了40千克。

(1)平均每个星期回收多少千克废纸?

(2)平均每个班回收了多少千克废纸?

【设计意图:这个习题的设计主要是为了巩固本节课所学知识点,并培养学生用数学知识去解决实际问题的能力,形成技能发展创新思维】

4、拓展延伸,小结作业

小结环节我会这样提问:今天我们学习了什么?你们觉得自己学的怎么样,学懂了没有?在课后让同学们调查家人的身高及体重,算出平均身高和平均体重。

【设计意图:这个作业的设计,既可以巩固新学知识,掌握平均数的计算方法,学会计算简单的平均数,又可以提高学生的合作能力及收集信息的能力。同时让学生再次感悟平均数与生活的紧密联系】

七、说板书设计

第五篇:四年级数学下册《方程》说课稿

四年级数学下册《方程》说课稿

作为一位杰出的教职工,有必要进行细致的说课稿准备工作,认真拟定说课稿,那么你有了解过说课稿吗?以下是小编收集整理的四年级数学下册《方程》说课稿,仅供参考,大家一起来看看吧。

四年级数学下册《方程》说课稿1

一、教材分析

解简易方程这部分教材有两种类型方程的解法.教材先出示例5:一个工地用汽车运土,每辆车运X吨。一天上午运了4车,下午运了3车。这一天共运土多少吨?要求3ⅹ+4ⅹ=?这在初中代数中,叫做合并同类项,考虑到小学生的知识水平和接受能力,教材没有出现同类项等属语.而是通过实例并借助插图,帮助学生根据运算意义,从直观上理解计算方法.在此基础上,教学例6、7X+9X=80的解法.这也是本节教材的一个重点内容.在后面学习列方程解应用题时,有些含有两个未知数的题目,需要列出这样的方程.而且这种题型思路统一,解法一致,既可减轻学生的负担,又可提高学生解答应用题的能力.为今后学习分数应用题及代数方程解应用题打下了牢固的基础。所以我们必须重视这部分内容的教学.结合教学内容,我将教学目标设计为:

智育目标(1).理解掌握形如aⅹ±bⅹ=c的方程的算理.(2).会解形如aⅹ±bⅹ=c的方程.为列方程解应用题作准备.德育目标 培养学生学习中的团结互助精神。

能力目标 培养学生分析、推理能力和思维的灵活性.重、难点 形如aⅹ±bⅹ=c的解法

其次,来说说我设计这课时的二、教学理念

学生的数学学习过程是他们带着原有的知识背景、活动经验和理解走进学习活动,并通过自己的主体活动,包括独立思考、与他人交流和反思等,本课是在学生已有的观察法、比较法的基础上进一步运用尝试教学法、迁移法,去建构对数学的理解。这就很好地突出了学习者的主体作用,使学生主动参与到整个学习过程中去,把发现知识内在联系的机会与权利还给学生。从而培养和提高学生分析问题的能力及推理能力。

结合教学目标和学生实际,然后说说我的三、教学流程

我将教学流程设依次设计为:精心设计 运用迁移、创设情景 激活课堂、重视指导 拓展延伸三步曲。先说第一步

精心设计 运用迁移

教学伊始,为学生营造一个故事情景:班上准备开一次文艺晚会,派你去买些水果,你会怎样给营业员付钱?片刻沉默后,有的说:我会认认刻度,确定有几斤再付钱。因为方程本来就是等式,这样,让学生在数学中也学会生活。再出示本课准备阶段两种类型的练习题,1、用字母表示乘法分配律,2、一个工地用汽车运土,每辆车运5吨,一天上午运了4车,下午运了3车,这一天共运土多少吨?对例5、例6的学习具有迁移的作用,通过看看、比比、算算,让学生运用已有知识和解题方法可进行自主学习。因为数学本身也是充满观察与猜想的活动。如何围绕重点展开教学,如何突破难点呢?因此教学流程设计的第二步

创设情景 激活课堂

“喜欢和好奇比什么都重要.”只有贴近孩子的生活,让他们感到亲切。这样才能产生乐学、好学的动力.本课教学设计时,我对教材的例题加以调整.怎么样才能使学生熟悉而喜欢呢?我不由想起了学生去中村桔园参观一事,我灵机一动,对呀!多好的题材,这样由原来的“工地运土”变为学生熟知的“中村运桔子”。(图片)让学生知道数学来源于生活,身边处处皆数学。先让学生尝试解答,在复习题(3)中,学生根据题意列出了5×4+5×3和5×(4+3),观察两个算式的特点,学生明白了这里的两种方法就是运用了乘法分配律,学生已经具备一定的解题能力,在此基础上,由复习题演变引出新课,在学生明确其异同点后,迁移运用已有知识充分进行尝试练习解决问题.但仍有少数基础差、能力弱的孩子难以明白。为照顾全体学生,因材施教。我提出要求,激励孩子们干什么都要比着干,抢着干,争着干!看看哪组最团结,愿意帮助本组学习有困难的同伴度过难关!因为每个孩子都是积极向上的,只要给他一个舞台,每个人都愿意把自己展示给大家。这样,在本组同学的带动下,就是学习有困难的孩子也很快得出了4ⅹ+3ⅹ=7ⅹ。我又将例5的问题变成:上午比下午多运多少吨?有几个学生的答案是:4ⅹ-3ⅹ=1ⅹ。在此,强调随机教学,学生答案出现偏差,有不适当之处,教师要适时点拔,及时纠正。教师提示:1ⅹ可以写成ⅹ,1可省略不写。并通过不同类型的巩固题让学生更进一步明确算理。尤其注意b-0.6b ⅹ-0.36ⅹ的算法。这样为例6的学习解决了关键一步,掌握例6 7X+9X=80的解题方法自然水到渠成。解答含有两个未知数的方程,是本节课的重点,也是难点。我们不仅要让学生会算,还要让学生会说。说清算理: 一个式子中如果含有两个未知数ⅹ的加减法,可以根据乘法分配律和式子所表示的意义,将未知数前面的因数相加或相减,再乘ⅹ,算出结果.因为学生总爱把自己当成探索者、研究者、发现者。也培养了孩子们的综合能力和语言表达能力。当然只要求少数同学能归纳算理就行,学生之间存在着不可避免的差异,对此不作全面要求.在此教师强调检验,没要求检验的也要口算检验,这是对学生学习习惯的培养,从小养成严谨、认真的学习态度。从而人人都能获得必需的数学,但是不同层次的学生应得到不同程度的发展,因此教学流程的第三步设计为:

重视指导 拓展延伸

《数学课程标准》中指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。只是在学生需要时给予恰当的帮助。”通过不同形式的习题帮助学生掌握新知。进一步突出本节课的重难点。尤其是创新题,1、编两个不同的方程,使方程的解都是ⅹ=6,2、在□中填入合适的数,使等式成立。具有一定的挑战性.只有当自己的观点与集体不一致时,才会产生要证实自己思想的欲望,从而激活学生思维的火花.但是提出挑战并不意味着要难倒学生,而是要激励学生在学习的过程中不断地去获得成功的体验.学生是学习的主体,只有通过学生自身的”再创造”活动,才能纳入其认知结构中,才可能成为有效的知识.在教与学的活动中,有老师的组织、参与和指导,有同伴的合作、交流与探索。“授之以鱼,不如授之以渔。”虽只有一字只差,却是两种截然不同的教育理念。我选择后者。这样既培养了孩子们分析、推理能力和思维的灵活性,又为学生的新知建构拓展出更大的空间!

最后,说说本节课的四、教学反思

本课从复习题导入例5,由例5过渡到例6,一环一环,环环相扣,由表及里,由浅入深,逐步深入,借助多媒体教学手段,找学生熟悉的教学题材,使枯燥的数学课堂变得妙趣横生,充满活力;运用迁移法、尝试法、小组合作等不同形式的学习,既可帮助学生突出重点,分散难点,使学生很快掌握了形如aⅹ±bⅹ=c的方程的算理,又可培养学生学习中团结互助的精神。使每位学生都体验着参与探索的乐趣和成功的喜悦!

四年级数学下册《方程》说课稿2

一、教材研读。

1、教材编排。

(1)逻辑分析:

方程是等式里的一类特殊对象,传统教材都用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义,考虑到方程是在刻画生活中的等量关系时产生的,而且在北师大教材体系中一年级到四年级上册,学生对等式和不等式有所了解,只是没有把“等式”这样一个概念交给学生。并且已经采取逐步渗透的方法来培养代数思维。例如:()+8=14,90-()〉65,因此,在北师大教科书里没有从方程和等式的内涵上作太多比较,直接以等式为立足点,立足点较高。

(2)语言信息及价值分析:

本课教材的三幅情境图,由浅入深,由具体到抽象,层层递进。第一幅情境借助平衡,让学生领悟等式;第二幅情境完成数量关系向等量关系的转化;第三幅情境引发学生思考,让学生从不同角度找到多种等量关系,列出方程。

2、教学目标。

(1)结合具体情境,建立方程的概念。

(2)在简单情境中寻找等量关系,并会用方程表示。

(3)经历从生活情景到方程模型的建构过程,进一步感受数学与生活之间的密切联系。

3、教学重难点:

(1)重点:在简单具体情境中寻找等量关系,并会用方程表示。抓住“含有未知数”和“等式”两个核心关键词建立方程的概念。

(2)难点:数量关系向等量关系的转化。

二、学情分析:

学生原有的认知经验是用算术方法来解决问题,算术思维是更接近日常生活的思维。由于从算术思维到代数思维的认识发展是非连续的,所以列算式求答案的习惯性思维转向借助等量关系列方程的新思维方式比较困难。列算式时以分析数量关系为主,知与未知,泾渭分明;在代数法中,辩证地处理知与未知、求与不求,使这一矛盾双方和谐地处于同一方程中。

三、流程设计:

为了更好地引发学生的思考,提高学生解决问题的能力,我做了如下的设计:

(一)引“典”激趣,诱发思考。

引用“曹冲称象”的故事,提出解决问题的策略,寻找相等关系,同时激发学生学习的兴趣。

(二)探究新知,建立概念。

1、借助天平,启发思考。

我将教材情境动态化,通过FLANSH课件,让学生充分感知当天平两端都没放物品的时候天平左右两边是平衡的。当我们往天平的一端放上物品而另一端不放的时候,或者两端放的物品质量不等的时候,天平的两臂不平衡,表示两边物体的质量不相等。这时候左边大于右边,或右边大于左边。当我们经过调整,天平两臂再次平衡时,表示两边的物体质量相等,即左边=右边。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。同时,对情境中数据也进行了分批给出的处理。先给出了左边鱼食和小砝码的重量,让学生用一个数学表达式来表示天平左边的质量,再给出天平右边的质量,让学生列出等式。这样就较好地避免了学生习惯性的使用算术的思维方式,同时也顺利地进行了用数字表示向用符号表示的转化。在这一情境的教学中,借助天平这一载体,启发学生理解了平衡,认识了等式。

第二个主题图是本节课教学的核心内容。首先,我引导学生在情境中找出文字信息“4块月饼的质量一共是380克”。然后引导学生结合情境图,把这一信息转化为等量关系。4块月饼的质量是如何表示的呢?用数量关系“每块月饼的质量×4”来表示,“每块月饼的质量×4”表示的是4块月饼的质量,380克也表示4块月饼的质量,所以他们相等。从而完成数量关系向等量关系的转化,算术思想向代数思想的转化,改变学生的长达4年的惯性思维方式。

3、变换角度,深入思考。

第三幅情境图隐含着多样的等量关系,也正是引发学生数学思考的最佳情境。根据学生认识的深入程度,可适当让学生体会到等式的“值等”和“意等”,并放手让学生探究,根据不同的认识找到不同的等量关系,列出等量关系不同的同解方程。在教学中,先引导孩子发现情境中的基本相等关系:2瓶水的'水量+一杯水的水量=一壶水的水量,并且列出等式2z+200=20xx,在此基础上,再引导孩子发现其他的等量关系。在这一过程中,充分激发孩子探求知识的欲望,调动孩子思考的主动性和灵活性,从而找到多样化的等量关系,并进一步提高孩子解决数学问题的能力。

4、建立概念,判断巩固。

在前面教学的基础上总结、抽象出方程的含义。通过三道例题的简洁数学式子表达,让小组合作寻找他们的共同特点,从而建立方程的概念。“含有未知数”与“等式”是方程概念的两点最重要的内涵。并通过“练一练”让学生直接找出方程。

(三)生活应用,提高能力。

数学应该服务于生活,紧接着我让同学们根据直观图象列方程。这些题目都来自于生活实际,并且分别以现实情境图、线段、文字叙述、综合拓展为顺序,层层递进。学生在用方程表示直观情境里的相等关系后,他们在写方程时会更加关注方程的本质属性,从而巩固方程的概念。练习强调学生在按照“数量关系—等量关系—方程”这样一个过程,通过想一想,找一找,说一说,写一写等不同的形式学会用方程来表示生活中的实际问题,并体会到方程的作用,为以后运用方程解决实际问题打下坚实基础。

附板书:

方程

含有未知数的等式叫方程。

左边的质量=右边的质量 两瓶水的水量+一杯水的水量=一壶水的水量

四年级数学下册《方程》说课稿3

一、说教材

本节课的教学内容是北师大四年级下册第七单元《认识方程》的第三课时,本单元教学方程的知识,是在四年级(下册)“用字母表示数”的基础上编排的。为了使学生体会方程是拥有平衡的内在相等关系的等式,刻画现实世界的一个有效的数学模型,产生学习方程的欲望,教材设置了多方面的问题情境,让学生从这些具体的情境中获取信息,发现等量关系并用自己的语言加以表述,然后尝试用含有字母的等式——方程表示各个相等关系。教材非常重视对相等关系的挖掘和描述,为后面列方程解决实际问题打下了良好的基础。

教学目标:

1、理解方程的含义。

2、能用方程表示简单的等量关系。而情感态度价值观靠教师情感和教师的一举一动进行渗透,一般不作为教学目标向学生展示。但由于自己教师语言少,所以渗透的不是很好。

教学重难点:

理解方程的含义。能用方程表示简单的等量关系。

二、说学法

先学、后教、检测,检测中发现错误,要及时更正,但在这一环节中,不是教师更正,而是学生自我进行更正,也就是“兵教兵”,所以,在检测的时候,我先叫的是不好的学生,不好的学生在做题的时候出现了错误,让好学生去帮助,这样,好学生又更进一步的掌握了知识,三、说教法

本节课,我主要是让学生看课本中的内容,“看图看文——结合图找相等关系———列方程-----------总结等式的特点”每一步都让学生自主去完成。

四、说教学环节

第一步:板书课题,出示教学目标。

第二步:出示自学指导,认真看课本p88的内容,看图、看文字

(根据下列提示:1、天平保持平衡,说明了什么?2、x+5=10,x+5、10、”=”各表示什么意思?3、结合图1,从图2、图3中找出相等关系)

思考:等式有什么特点?

第三步:先学

1、看一看。

(认真看课本p88的内容,看图、看文字。)

2、做一做。

(请名一板演,其余练习本完成。)

第四步:后教。

1、更正。

2、讨论(议一议)。

⑴评议对错。

⑵评议板书。

⑶小结等式的特点?

3、加强训练。

第五步:全课小结。

第六步:当堂完成作业。

由于自己的教学经验和能力水平有限,而且有是第一次用这种模式上课,所以在课堂组织上出现很多不足,敬请各位同行能批评指正,你们认真的点评将会促进一个年轻教师长足的进步。谢谢大家。

四年级数学下册《方程》说课稿4

学习目标:

1、理解并掌握方程的意义,弄清方程与等式间的联系与区别。

2、通过在不同的情景中建立等量关系列方程,经历方程模型的建构的过程。

3、初步培养学生的观察、抽象概括等能力。

学习重点:会用方程表示事物之间简单的数量关系。

学习难点:能根据图义,找到等量关系列出方程。

学习过程:

一、谈话引入。

师:生活中经常遇到各种各样的数,对吗?比如说,谁愿意告诉我你今年多大了?(学生说)只知道自己的年龄还不行,谁知道妈妈今年多大了?(学生说)自己的年龄,妈妈的年龄对你来说是已知数,那老师的年龄对你来说是……。(未知数)以此来引出未知数。

二、利用等量关系,正确列出等式。

1、出示天平图1:

天平左边10克,天平右边:2克和一个樱桃 师:看天平的显示,谁能列出一个等式?(樱桃的质量+ 2克=10克),如果用未知数X来表示樱桃的质量,那么,可以列出一个什么样的等式呢?(2+X=10)

2、出示情景图2:

四盒种子的质量一共是20xx克。

你从图中发现了什么?(4盒种子的质量=20xx克)

师:能根据这个相等关系写出一个等式吗?

师:请你给同学们介绍一下你的等式,先说字母表示什么意思? 师:如果用y表示每块月饼的质量,怎样用数学式子表示这个等式呢?(板书:4y=20xx)

师:下面老师加大难度,敢接受挑战吗?(同学们在家里帮爸爸妈妈倒过开水吗?现在请同学们仔细观察老师倒开水的过程,找一找这里有相等关系吗?)

3、课件出示图3:

一壶水刚好倒满两个开水瓶和一个杯子。师:你们找到其中的相等关系了吗?(两个热水瓶的盛水量+200毫升=20xx毫升)

师:如果用z表示每个热水瓶的盛水量,那么这个关系式可以怎样表示?(板书:2z+200=20xx)

4、理解方程的意义。

师:刚才我们通过称樱桃,称种子和水壶倒水的三次实践活动,得出了下面这三个等式:(x+5=10 4y=380 2z+200=20xx)

(1)同桌交流。说一说:上面的等式有什么共同特点?

(2)全班交流。

教师小结:这样含有未知数的等式叫方程。(板书课题:方程)师:自己读一读,你认为关键词是什么?

(3)巩固知识。

师:说一说方程必须具备哪几个条件?(一必须是等式,二必须含有未知数)

5、会写方程 师:你会自己写出一些方程吗?写下来同桌交换检查。

(学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。)

三、巩固练习。

1、判断

下面式子哪些是方程,哪些不是方程?

35+65=100 x -14>72 y +24

5x+32=47 28<16+14 6(y+2)=422、练一练课本67页第一题说一说各图中的等量关系,再列出方程。

四、总结评价。

师: 关于方程还有很多有趣的内容,相信同学们还会以饱满的精神、积极地态度去研究、去探索方程的奥妙。

板书设计:

方程

樱桃的质量+2克=10克x+2=10

每盒种子的质量×4=20xx克 4y=20xx

每个热水瓶盛水量×2+200=20xx克 2z+200=20xx

含有未知数的等式叫做方程。

相关内容

热门阅读

最新更新

随机推荐