首页 > 文库大全 > 实用范文 > 其他范文

《解方程》教学反思合集5篇范文

《解方程》教学反思合集5篇范文



第一篇:《解方程》教学反思

《解方程》教学反思合集

身为一位到岗不久的教师,我们需要很强的课堂教学能力,借助教学反思我们可以拓展自己的教学方式,怎样写教学反思才更能起到其作用呢?以下是小编精心整理的《解方程》教学反思,仅供参考,欢迎大家阅读。

《解方程》教学反思1

教学解方程共5个例题,以前的教法是利用加减乘除各部分之间的关系解;新教材使用的方法是利用等式的性质,应该说这种方法不用怎样理解,方程两边同时加减乘除一个数,方程两边依然相等。而利用加减乘除各部分之间的关系解,学生由于因各部分之间的关系混乱容易出错,而初中的教学也是利用了等式的性质,于是和本组老师讨论了一下,确定利用等式的性质进行教学,最后学生掌握方法之后,再利用加减乘除各部分之间的关系讲解一遍。然后让学生根据自己实际情况灵活运用。

可是跟设想的不一样,利用等式的性质进行教学时,有些地方学生还是不好理解,我分析了一下,觉得存在这样的问题。

1、如32-X=45,6÷x=3这样的方程,X在里面,学生不好理解为什么方程两边同时加X或同时乘X,我和学生又从天平开始,讲解,如果两边同时减32,或同时除以6,依然算不出X,我们如果同时加X或同时乘X,然后变成a+X=b或ax=b的形式,再利用所学的方法进行解方程就可以了,可是依然有部分学生没有掌握起来。

2、书写问题,利用等式的性质进行解方程时,书写比较繁琐,学生在比较之后,还是觉得用加减乘除各部分之间的关系解题时,书写简单一些。

所以,鉴于存在的问题,应该让两种方法同时并存,让学生根据自己情况,灵活选择解方程的方法。

《解方程》教学反思2

本节课的教学重点和难点是:理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点服务,因此我进行了大胆的尝试,在讲解方程的解时,给学生一个明确的目的,告诉他们:“解方程就是为了求出“方程的解”而“方程的解”是一个神奇的数,由此引起了学生的好奇心,通过练习让学生充分感知“方程的解”的神奇之处。

1.本课主要对解方程进行了解题练习。通过抢夺小红花等游戏的形式大大提高了学生学习数学的乐趣和兴趣!

2、通过本课的作业检测,有少量学生还是对本课的内容练习不是很到位。需要教师在课下不断的指导。

3、学生对于方程的书写格式掌握的很好,这一点很让人欣喜.

《解方程》教学反思3

《解方程》是人教课标版小学数学五年级上册第四单元内容,本节课是在认识用字母表示数的基础上进行教学的,新课程解方程教学与以往的最大不同就是,不是利用加减乘除各部分间的关系来解,而是利用天平保持平衡的原理,也就是我们常说的等式的基本性质解方程。

教学中我先利用课件演示了天平两端同时加上或减去同样的重量,同时扩大或缩小相同倍数,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础。然后出示例1,让学生列出方程x+3=9,用课件演示x+3个方块=9个方块,提问:“如果要称出x有多种,改怎么办?”,引导学生思考,只要将天平两端同时减去3个方块,天平仍平衡,得到一个x相当于6个方块,从而得到x=6。

你能把称的过程用算式表示出来吗?大部分学生快速的写出了我想要的答案:x+3-3=9-3,于是我问:为什么方程两边要同时减去3,而不减去其它数呢?学生沉默,终于有两双小手举起来了,“为了得到一个x得多少”,我又强调了一遍,我们的目标是求一个x的多少,所以要把多余的3减去,为了不耽误更多的时间,我没有继续深入探究。经过认真反思总结如下:一是从天平过渡到方程,类推的过程学生理解不透,天平两端同时减去3个方块,就相当于方程两边同时减去3,这个过程写下来时,要强调左右两边原来状态保持不变,要原样写下来,如果这样的话就不会造成有的学生不会格式;二是对为什么要减去3讨论不够,虽然有学生回答上来了,我应该能觉察出学生理解有困难,课件和天平能让学生懂得方程两边要同时减去相同的数,至于为什么这里要减去3却还似懂非懂,如果当时举例说明也许很有效果,比如:x-3=6,我们该怎么办呢?学生通过对比讨论,就会发现我们要求出一个x是多少,就要根据方程的具体情况,若比x多余的就要减去,不足x的就要补足,这样效果肯定好些。三是备学生环节出现差错,这部分内容应该不难,但学生的现有基础是确定教学方法的基础,从教学效果看,我明显做的不够。

《解方程》教学反思4

前两天讲解了简单的方程的解法,加法、减法乘法除法的,觉得孩子们接受的不错,一节课下来练习了好多题,每个孩子都能得心应手,自己还有点窃喜。可是今天却让我大跌眼镜。

昨天上课讲解了例4和例5,孩子们对了复杂的方程有了初步认识,但在每一步的分析之下孩子们也觉得很熟悉,原来是简单的方程结合在一起变成复杂的,只要掌握运算顺序就不难,结合例题的图示,分彩笔的例子,先分什么再分什么,让学生明白在具体算式中也是结合着实物图来做,先把3x看做一个整体,把剩下的4根彩笔减掉,要想得到一整盒x根的彩笔,就得把3整盒再平均分配,这样下来孩子们能够明白每一步的意思,他们能够知道先处理多余的彩笔,再考虑整盒的彩笔。这样下来理解也不是问题,又练了几道同类的题,也很顺手。例5的讲解上有些难度,孩子始终不太理解把括号看做一个整体,但在讲解和练习下也能做上了。

今天我想验收一下昨天学的怎么样,结果让我很头疼,为什么过了一宿好多同学又没了思绪,留了6道题,少数几个好同学能够顺利的做上,大部分同学还在思索着,课下辅导了几个差生,原来他们又把前面学的简单的方程解法又忘了,自己思考了一下,得给孩子们消化时间,课上会了不代表他们一直不忘,还得多加练习啊

《解方程》教学反思5

1.认知基础的“顽固性”

心理学研究表明,当人们熟练地掌握某种法则以后,往往就很难从另一种角度去思考问题,从而也就不容易顺利地实现由“过程”向“对象”的转变。在一至四年级,学生都是根据四则运算各部分之间的关系来做计算的,它既是学生十分熟悉的运算规律,同时又为新知的学习提供了合适的基础。方程是把已知和未知看作同等的地位,一样参与运算,从这个角度去看,当然也可以运用四则运算各部分之间的关系来做。而且,四则运算各部分之间的关系学生是先入为主、根深蒂固的,具有相对的“顽固性”,甚至在一定程度上会排斥新学的等式的性质,导致思维的“过早封闭”。因此,大多数学生这样做也就可以理解了。

2.两种方法形式上的相似引发学生思维的惰性

第一种方法书写较少,形式简单。第二种方法从表面看,显得烦琐、麻烦,而且方程左边的“40x÷40”可以直接简写成“x”,这样从表面上看就和第一种方法一样了。根据已有的经验已经能够正确地解方程了,何必又多此一举,再去理解、掌握等式的性质呢?学生形成思维惰性,就不会再去深究思路和观念的不同,更不会创新解法。

方程变得顺理成章、水到渠成。学生深刻认识到:利用等式的性质解方程,看似麻烦,实则简单,不须思考各部分之间的关系。这时,教师再适时介绍教材之所以这样编排是为了中小学方程解法的衔接,使学生认识到利用等式的性质解方程的必要性,观念得以更新、深化。

第二篇:解方程教学反思

解方程教学反思

林银海

教学环节:

1、方程的解

(出示例题):X+3=9 师:在这个方程中,X等于多少时,方程的左右两边的值相等? 生:X=6时,方程的左边和右边相等。

师:Y-15=20中,Y等于多少时,方程的左右两边的值相等? 生:Y=35时,方程的左边和右边相等。

师:使方程左右两边相等的未知数的值,叫做方程的解。(板书)

X=6是方程X+3=9的解。Y=35是方程Y=35的解。

2、解方程

例1 解方程X+3=9 1)自学解方程

师:我们以前做过一些求□的题目,实际上就是解方程,只是今天在格式方面有了新的要求。自学课本,想想有哪些新的格式要求。2)学生交流自学情况。

师:引导学生说出自己的推想过程

解方程应该先写解。

题中的相当于什么数?(加数)

怎么求加数?(一个加数=和-另一个加数)教师板书:解:X=9-3 X=6 师:象这样求方程的解的过程,叫做解方程。

师:X=6是不是方程的解呢?你有什么办法来验证它你呢?

引导学生进行口头检验。3)检验 例2 6X=19.8 师:学生尝试解方程,教师进行个别辅导。

交流核对,注意纠错。

师:怎样检查X=3.3是不是方程的解呢? 学习检验过程,教师边讲解边板书。检验:

把X=3.3代入原方程.方程左边=6×3.3=19.8,方程右边=19.8.因为左边=右边,所以X=3.3是原方程的解。

教师强调:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。4)总结有关格式的要求: A、做题时先写“解”字。B、各行的等号要对齐,不能连等。

C、想想未知数表示一个什么数,该怎么求。D、验算以“检验”的形式进行,有固定的格式。5)讨论:“方程的解”和“解方程有什么区别?”

方程的解是指未知数的值等于多少时能使等式左右两边相等;而解方程是指求出这个未知数的值的过程。因此方程的解是解方程过程中的一部分。它们既有联系,又有区别。6)试一试: 解方程并检验:

10+X=100 72÷X=3 教学反思:

本节课学习的简易方程,是在学生理解了方程的含义、加法与减法和乘法与除法关系以及会求□的基础上学习的。因此,在上课的时候我先引导学生回忆上节课学习内容的基础上引入课题,有利于激活学生认知结构中简易方程的有关知识,为本节课在新知识的学习做铺垫。在本课中教师时时渗透学法指导。如:通过看书自学、讨论交流等等,来帮助学生理解建立起解方程与方程的解这两个概念,引导学生观察、比较中发现并归纳总结出解简易方程的方法。教师强调了计算过程和根据,要求学生每一步都说解方程的根据,以此作为解方程的必要前奏,明显地降低了学生的错误率。另外,对于解方程的格式进行了强化训练,培养学生养成检验的良好学习习惯。

第三篇:解方程教学反思

教学反思

解方程教学反思

兰光小学 杨明义

小学五年级第四单元教材的设计打破了传统的教学方法。在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都加上或减去同一个数,等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。

在教学前,由于我个人比较偏好于传统的教学方法,总觉得用等式的性质解方程比较麻烦。为了转变自己的教学思想,更新教学观念,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学习的主人”和“教师是学习的组织者、引导者与合作者”的这一角度上,为学生创设学习此课的情境,通过直观演示,充分给学生提供小组交流的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的学习活动是那么的有滋有味,进而使我很顺利地就完成了本课的教学任务。

通过近段时间的学习,发现学生对这种方法掌握的很好,而且很乐意用等式的性质来解方程,但同时让我感到了一些困惑:

教材的编排上,整体难度下降,有意避开了,形如:45—X=23 56÷X=8等类型的题目。把用等式解决的方法单一化了。在实际教学中,如果用等式性质来解就比较麻烦。很显然这种方法存在着目前的局限性。对于好的学生来说,我们会让他们尝试接受——解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。但是用减法和除法各部分之间的关系解答就比较简单。

2、内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充X前面是除号或减号的方程的解法。

总之,要使孩子们爱学、乐学,教师就必须更新教学观念,充分理解教材,并要懂得为教学去创设合理情境,灵活处理教材中的问题,鼓励学生算法的多样化,真正体现课改精神——“人人学有价值的数学,人人都能获得必须的数学;不同的人在数学上得到不同的发展》

第四篇:解方程教学反思

解方程教学反思

方得余

我担任五年级数学课程教学,教材第四单元为简易方程,讲解如何解方程,这对于小学生来说,是一个全新的知识,添加了一个未知数“x”,同学们对这个“x”充满了好奇心,但这种好奇心却不能坚持很久,在学了一段时间后,很多同学就开始觉得没他们想象中的那么好玩了,针对这样的问题,我们老师应该怎样调动起学生的积极性成了一个重要的问题。

在以前的教材中,解方程首先要掌握加、减、乘、除法各部分之间的联系与区别,然后利用一个加数加上另一个加数等于和、被减数减去减数等于差、一个因数乘于另一个因数等于积、被除数除于除数等于商等之间的关系进行解方程。然而,现在的教材里却没有提到这些关系,而是把它改成用天平的平衡原理来讨论方程的解答过程,让学生知道方程的左右两边是如何相等的,这样把学生的抽象思维转化成了实物的呈现,学生感知等式就变得更加的容易。但这仅仅是学生知道方程的平衡原理,在解方程的过程中却还是会遇到很多的问题,下面说说学生在解方程的过程中容易出现的几个问题:

一、平衡的把握。

在解方程的过程中,我们通常说的方程两边平衡,指的是方程两边的值相等,而方程两边的值恰恰是我们不知道的,因为方程的一边或另一边或两边一定是有未知数的,因而我们无法判断方程两边是否相等,那如何把方程两边平衡说的更具体,让学生更能理解其中的道理成了棘手的问题。

二、方程与递等式的区别

递等式,即四则混合运算。在四则混合运算的算式中,按照运算顺序把计算过程依次用等式表示出来,这样的等式叫做递等式。方程不同于递等式,这个所有的人都知道,但是学生却经常把方程和递等式联系在一起,以为它们就是一样的。每个同学都知道“含有未知数的等式叫做方程”,第一,要含有未知数;第二,要是等式。如果叫同学来判断某个式子是否是方程,多数同学都能判断得对,但在解方程的过程中很大一部分同学书写的格式却是按照递等式的格式来书写的,这说明还没有真正的理解方程与递等式的关系。

三、未知数的理解

未知数即未来知道的数,既然是未来知道的数,那么说来它还是一个数,只是我们暂时不知道这个数是多少而已。每个方程都一定含有未知数,解方程也就是要求出这个未知数的值。学生在这一点很难理解,总认为本来就是一个字母,怎么会是一个数呢。

四、解方程的格式

解方程的格式要求是非常严格的,比如说在解方程时,等号要对齐,每一步都只能有一个等号,每一步都要含有未知数“x”等,这些都是我们解方程不可缺少的,这里也是学生经常犯的一个误区。

五、解方程的目的

解方程的目的说的就是解方程是为了什么,实际上解方程就是为了求出方程的解,也就是未知数“x”的值,让未知的数变成已知的过程,很多同学不能清楚的把握这一点,简单的认为是方程的左边等于右边,而不会利用方程左边和右边的关系进行求解方程。

六、如何找出等量关系

如何找出等量关系是用方程解决解决问题的关键,只有正确找出等量关系才能正确的列出方程。一个题目中可能有很多个等量关系,如何分析题目找到一个好的等量关系成为学生迫不及待解决的问题。

七、等量关系与所列方程的关系

一个题目,能否找到合适的等量关系完全决定所列方程求解过程,甚至如果不能找到正确的等量关系,还可能导致方程的错误列出,因此,在一个题目中,能否找出正确而优异的等量关系成为解方程的关键所在。

在教学中,除了利用一个加数加上另一个加数等于和、被减数减去减数等于差、一个因数乘于另一个因数等于积、被除数除于除数等于商等之间的关系和天平的平衡原理解方程外,还可以教会学生利用移向的方法来求解方程,可以从方程的左边移向右边,也可以从方程的右边移向左边,这样也给学生增加了更多的知识。

在解方程中,有很多地方是需要老师和同学共同注意的,在本章教学中,由于学生的知识水平参差不齐,有很多遗憾的地方,望在今后的教学中再接再厉,总结出更好的教学方法,让学生的成绩能够更上一层楼。

第五篇:《解方程》教学反思

教材是利用等式的性质来解方程。通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立,等式两边都乘一个数(或除以一个不为0的数),等式仍然成立的性质。利用探索发现的等式的性质,解简单的方程。如求出y+8=10中的未知数y。教材呈现了两种思路。一种是学生直接想“?+8=10”,从而得出答案。另一种是利用等式的性质解方程,即“方程的两边都减8”的方法。y+8-8=10-8,y=2。这样解方程,刚开始时,为了学生理解方便,等号左边的“+8-8”都要写出来,会比较麻烦,也容易出错。《数学课程标准》提倡算法多样化的新理念,激发了我对解方程这课从不同的角度来进行解读和探讨,因此,在学生理解了用等式的性质解方程后,我又留给学生一定的时间和空间,让学生独立思考,发挥各自的聪明才智,自主探索,找出不同的解题方法。

学生经历了独立思考,掌握的知识才更深刻、更透彻。久而久之,将促使学生养成独立思考的习惯,培养了学生解决问题的能力。将学生的方法整理后,我又适时给学生提供了另外两种解方程的方法,利用加、减、乘、除法各部分之间的关系来解方程和通过移项来解方程。

相关内容

热门阅读

最新更新

随机推荐