第一篇:浅层排水处理的施工工艺研究论文
1前言
当软土地基在荷载作用下,土中孔隙水将慢慢排出,孔隙水压力u减小,地基发生固结变形,但在总应力δ不变的情况下,有效应力δ′就提高,地基土的强度逐渐增长。同时,其与孔隙水压力u有以下关系:δ′=δ-u。
ピ诟枚蔚乇砩喜贾们巢闩潘系统就是为了改变地基原有的排水边界条件,缩短排水距离,使孔隙水压力在施工及预压期内大部分消散;并用路基超载加压来增大总应力,减少由次固结而产生的沉降,最终使有效应力得以增加、地基强度增强。从而达到沉降在施工及预压期内大部分或基本完成。浅层排水处理系统共采用了四种方案:开挖砂沟、铺设砂垫层、铺设S230横向塑料排水板和双复合土工布。
2施工准备工作
2.1清除边沟两侧根植土
应将设计两边沟外侧边缘间的根植土清除,深度控制在10~15cm,然后进行原地面的碾压。在设计边沟位置开挖临时排水沟,其深度和纵坡以能排水为宜。
2.2原地表面的处理
用6%石灰土填至未开挖表土时的原地面标高,然后再做路拱,横坡i=2%左右,并保持表面平整、密实。
2.3材料的选择和试验
2.3.1砂
施工中要求砂为中粗,细度模数大于2.2,含泥量不大于5%,用水冲法试验,试验方法应符合JTJ053-83《公路工程水泥混凝土试验规程》的有关规定。
2.3.2S230塑料排水板
本工程所用的塑料板截面宽度为230mm,厚度为8mm,是由塑料芯板外包无纺布膜组成的复合体,除其外观应完好外,还应满足滤膜渗透系数大于5×10-5cm/s,滤膜抗拉强度大于10N/cm,复合体纵向抗拉强度9.0kN(10%应变),复合体通水量294cm3/s,复合体拉伸应变11.8%(峰值应变)。
2.3.3复合土工布
本工程所采用的复合土工布是纯涤纶短纤无纺土工织物(ω≥400g/m2)和聚丙烯
有纺土工布。其技术指标为抗拉强度大于2500N/5cm2,伸长率大于14%,垂直向渗透系数大于0.08cm/s,水平向渗透系数大于0.35cm/s(20kPa)、012cm/s(100kPa)、0.06cm/s(200kPa)。
3浅层排水处理施工工艺
3.1砂沟
由于砂的渗透系数达到0.06~0.006cm/s,比路基调拱层至少大两个数量级,孔隙水将沿着横向砂沟并以大于原来的速率向两边排出,从而达到排水固结的目的。
3.1.1砂沟的开挖
在调拱层上等厚分两层铺筑6%石灰土层,厚度为15cm,宽度为B-2×90cm(B为设计
坡脚宽)。
本工程开挖砂沟的尺寸为深30cm,宽40cm,相邻砂沟的净距为60cm,其横断面开挖出的土应运至路基范围外。在砂沟的左、右两端,应特别注意清除杂质和土粒,以使砂沟中的砂与碎石反滤层直接相连;在纵向接头处,应整修出整齐的被碾压过的断面,其长度不宜小于100cm。
3.1.2砂沟内砂的回填和密实
开挖好的砂沟经验收合格后,分两层回填砂,宜用人工及小推车运输,禁止用重型轮胎式或履带式机械,碾压则用钢轮或人工夯实为宜。
3.1.3施工标准和要求(见表1)。
表1
检查项目允许偏差或规定值检验频率检验方法
压实度rd≥1.5t/m350m抽检二断面,每断面三点环刀法
纵断高程±20mm20m抽检一断面,每断面测五点水准仪
厚度0~20mm20m抽检一断面,每断面测三点用钢尺测量
3.2砂垫层
砂垫层是一种软性垫层,其孔隙水压力的消散速率比砂沟快,它还可以有效地防止毛细管水上升到路堤。
厚为30cm的砂垫层可分两层摊铺。摊铺时的松铺系数可按下式计算:K=rd×(1+W湿)/r湿(rd可取0.88.rdmax=0.88×1.5=1.32),W湿取碾压时砂的含水量,r湿为砂的松铺湿容重)。但砂垫层的碾压需特别注意,应根据碾压面积大小,选用碾压机械。
3.3S230横向塑料排水板
本工程所用的塑料板,两面均有凹槽,具有良好的三维透水性,且由于外包的无纺布滤膜可以防止排水通道不被堵塞,构成水平排水层。
3.3.1排水板的铺设
在验收合格的调拱层上按中到中距离83cm,定出每条塑料板的位置。
铺设时,不能损坏塑料板的无纺布滤膜,塑料板应自然平展紧贴在调拱层上,不能隆起、扭曲。最好边施工,边用12号铅丝做成U型钉将塑料板固定在调拱层上,间距2.0m一个。需要接长时,应采用滤膜内芯平搭接的形式,搭接长度不小于20cm,不得错位。
3.3.2施工标准和要求
塑料板在运至工地前,应抽样检查其是否符合标准,抽检频率为1次/5000m,排水板间距最大误差在2cm以内,抽检频率为每8.53m(10条排水板)查一条,每条查10点;顺直度偏差控制在±2cm(20m长度内),每10条检查一条,每用3m直尺连续检测;不合格的坚决不用,以保证质量。
3.4双层复合土工布
土工布除了能构成浅层排水层外,由于它的整体性和抗拉强度,当在较大荷载作用下,高模量的土工布受力后将产生一垂直分力,可以重新分配内部应力,减少横断面方向上的沉降差异。同时,土工布在承受拉力和与土的摩擦作用时,还可以增大侧向限制力,阻止侧向挤出。
土工布的铺设,应精心地将其平顺展开在调拱层上,不得扭曲、褶皱、重叠。拼幅时宜用平头搭接,搭接长度不小于30cm,搭缝上下应错开;而接长时宜采用缝接来保证应力传递的连续性,须用尼龙线作对面缝接,缝接长度不小于30cm。
施工中如发现土工布有破损时,应修补好或更换。还要注意土工布在存放和铺设过程中应尽量避免长时间暴露,以免影响其性能受损。
以上采用的砂沟、砂垫层横向塑料板、双层复合土工布等措施,只能构成软基浅层排水层。其排水系统还包括两侧的碎石砂反滤层,它能有效地将排水层的水排向两侧边沟,而不致使排水通道被土粒堵塞。
4几点体会
(1)从路堤及软土层渗出的水,如果存积在路堤坡脚处,将引起边坡的局部破坏。因此,施工便道不能紧靠路堤坡脚处,宜将便道布置在临时排水沟的外侧,同时应处理好坡脚处的地表水,以利施工期的排水通畅,使地基得到快速固结。
(2)调拱层由于是6%石灰土底板,使得砂沟、砂垫层的下承层渗透性减小,而且中粗砂价格昂贵。因此,可以用砂砾石或瓜子片替代砂垫层或砂沟,只要满足其本身的渗透系数较下部土层大两个数量级、含泥量低于5%即可。
(3)S230塑料排水板,对比实际试验的各项技术指标和规范上规定的各项技术指标,部分指标大大高于规范值,显然很不经济。在实际选材时,不能只依某些个人的判断或者是一些商业性的目的,而应通过对比试验,选定既能满足试验规范要求、又经济实用的材料。
(4)对双层复合土工布,原设计为纵横向,后改成横向双层复合土工布,克服了纵向层难以锚固的困难,对均匀路基的沉降有比较明显的效果。
(5)双层复合土工布的横向锚固回折长度为1.77m,而实践表明,所铺设的双层复合土工布路段,最大水平位移为5.2cm,铺设塑料板路段最大水平位移为6.7cm,其锚固方法是可行的。建议双层土工布回折可改成单层回折。
第二篇:关于跨海大桥施工工艺研究论文
浙江宁波招宝山大桥西引桥A、B匝道采用4-5跨一联的后张法预应力连续箱梁,在满布支架上现浇,支点附近桥面板的预应力采用715钢绞线,使用OVM15-7B压花锚固。锚固的桥面板厚20cm,设计混凝土强度为C50。
钢绞线压花锚固技术使用时间不长,尚未形成一套成熟的经验,尤其是七孔压花锚,施工实践相当少。根据一些资料介绍,混凝土的强度,构造配筋的多少、混凝土握裹层厚度及钢绞线长度等因素,对压花锚固技术的成败都起着非常重要的作用。因此,为了验证设计,并为施工提供必要的数据,在箱梁施工前进行了一次压花锚固性能试验,由试验积累了不少有价值的资料与经验。
1试块的设计
1.1试块尺寸地拟定;
锚固板厚度、混凝土强度、构造钢筋的布置、钢绞线的锚固长度及锚具质量等是影响压花锚固性能的几项指标。为了尽可能使试块与实际箱梁各项参数相接近,故拟定试块尺寸长300cm、宽150cm、厚20cm,混凝土的强度为C50,在锚固端设钢筋网片和螺旋筋,均与实桥保持一致。试块内钢绞线品种与实桥相同。钢绞线压花形状按实桥设计图制作,压花后用钢筋将钢绞线固定好,并采用与实桥相同的扁型波纹管及7孔扁锚具固定。试块内设一部分构造钢筋,其数量较实桥设计图的钢筋量稍少。钢绞线锚固长度较大,为增加其稳定,在试块的两侧增设20cm高的加劲肋。试块分两次灌注,间隔6天,在灌注试验块的同时做砼强度试块5组。
1.2测点布置及试验目的;
(1)为弄清混凝土对钢绞线粘结锚固力沿长度的变化,选择有代表性的钢绞线沿长度方向设应变测点。每个试块选择4根钢绞线,每根钢绞线按等距离设2~3个测点。在测点处将钢绞线打磨平整,再按照工艺要求,在每个测点粘贴两片应变片。
(2)为了测试出压花锚附近混凝土应力分布情况,对第一号试块测试采用:a.在试块内埋设钢筋应变计24根;b.在试块的一面粘贴大标距(标距100cm)应变片;c.在试块的另一面采用手持式应变仪,共设测点44组。对第二号试块的应力测试采用:a.在试块内埋设钢筋计16根;b.在试块的一面采用手持应变仪,共设测点44组。
2实验装置及加载方法
实验设备主要有张拉千斤顶YCQ-25,及配套的油泵、油压表。试验前用YE-5000压力机进行标定。测量混凝土变形用的BYJ-2行应变仪和手持式应变仪。为了观测砼的裂纹还配备了刻度放大镜。
按设计要求,当混凝土强度达到设计强度的85%后,即可进行张拉试验。第一号试块灌注后,故于3日后开始试验。试验前对混凝土强度试块试验为57.6MkP,稍超出了设计张拉强度。第二号块试验时,混凝土的强度控制在设计强度的85%之内,测量混凝土应力时不再贴应变片,仅采用手持式应变仪。从灌注试块后第二天开始,每天上午对强度试块进行试验。进行第二号块试验时混凝土试块张拉强度39.7MPa,尽管较设计张拉强度42.5MPa低一点,但这是偏于安全的。
两次试验的加载程序均按设计张拉力的40%、70%、100%三级加载。具体加载方法及测试内容如下:
(1)加载至40%(78KN)后保持荷载5分钟,对各测点进行测试;
(2)当加载至70%(136.7KN)后保持10分钟,进行各测点的测试,并观测混凝土表面是否有裂缝;
(3)当加载至100%(195.3kN)后保持10分钟,再次进行各测点的测试,观测混凝土表面是否有裂缝;
原计划加载至100%后持荷2小时,继续观测各项表面数据变化情况,并将试块表面清扫干净,仔细观测表面有无裂缝,再持荷一小时继续加载(超张拉)至破坏。但因千斤顶额定最大张拉力为250kN,油泵压强上不去,最后仅加载至230kN即停止,此时仅超张拉18%,在此荷载状态下进行了各项数据的观测和混凝土表面裂缝的观测。鉴于观测结果正常,决定再持荷24小时继续观测,第二天再去观测时,试块表面仍未出现裂缝。
3结果及分析
3.1钢绞线受力测试结果:
将两次试验过程中钢绞线上应变测点在各阶段中测试数据换算成轴向拉力(钢绞线弹性模量为1.95*105MPa,断面积为140mm2),从数据看出,钢绞线的测点距张拉端近的点实测拉力最大;第二个测点(距离张拉锚固端70cm~80cm)拉力小了很多;第三个测点(距离张拉锚固端110cm~130cm)基本上没有拉力存在。这种分布随着张拉阶段不同有规律的变化。
3.2钢绞线与混凝土的粘贴锚固性能;
同一根钢绞线相邻两点拉力差即是该段混凝土对钢绞线粘结锚固力。从数据看这种锚固力也是从张拉端开始逐渐递减,而且递减得很快。到第二个测点已经变得很小了。由第二个测点到第三个测点之间基本没有锚固力。说明有效锚固长度只到第二个测点为止,往后基本没有锚固作用。
3.3试块混凝土应力测试结果;
本次试验在两个试块内都埋设了应变式钢筋计,但由于灌注过程中失效一部分,加上测试结果也不十分理想,比较离散。此外在1号试块表面贴了不少大标距应变片,但由于粘贴时混凝土龄期仅3天,混凝土内部的自由水尚未完全散失,因此不少测点因绝缘度差使测试数据规律性差。三种测试手段中以手持式应变仪测试结果相对最稳定、规律性也好。
3.3.1竖向应力;
将两个试块的手持式应变仪测试值换算成应力值,可以看出,张拉过程中在压花锚顶端出现了拉应力。拉应力最大为1.44MPa。其他各断面均为压应力。张拉锚头附近断面的压应力最大,可达6.12MPa(2号试块中)。
3.3.2横向应力;
两个试块的实测应变值除在张拉端锚头的两侧有很小的拉应力出现外,其他均为压应力。最大压应力大约在试块长度1/2断面处,最大值为2.84MPa(1号试块中)。
从两个试块的测试结果看,第二次试验的应力值普遍偏大,两次试验,混凝土的龄期不同,两个试块的混凝土强度有一定的差别,第一号试块张拉时,混凝土强度为57.6MPa,第二号试块张拉时强度为39.7MPa。虽然张拉力一样,由于强度不同产生的应变不同。而换算时采用同样弹性模量值,结果使计算出的应力值有一个差别。
3.3.3试块混凝土表面裂纹情况两次试验每次张拉后都检查试块混凝土表面,特别进行第三级张拉和超张拉后,经过仔细的检查,均未发现混凝土表面有裂纹。
从混凝土应力测试结果看,拉压应力值都很小,也不足以造成混凝土开裂。
4结论
4.1本次压花锚固性能试验不论试块尺寸,混凝土强度还是压花锚固长度均与实梁设计保持一致,其中试块的构造配筋比实梁偏少;另外第二个试块张拉时混凝土的强度只有39.7MPa,比设计要求的42.5MPa还小,而且对两个试块都按设计张拉力的15%~18%进行超张拉,既没有发生钢绞线拔出,也没有发生表面有裂纹。说明采用压花锚的设计是合理的,所设计梁的断面尺寸(桥面板厚度20cm)是满足要求的,按照设计要求进行施工是安全的。
4.2从混凝土对钢绞线锚固力的实测结果看,靠近张拉端粘结锚固力大,往后很快地递减,有效锚固长度为80cm左右。但这并不是说压花锚顶端灯泡状没有锚固作用,相反,而是由于灯泡状压花锚地作用使锚固能力加强了。还应考虑在做试验时总是比在实桥上的操作精心得多,因此,把压花锚的锚固作用作为施工操作误差的一种安全储备也是很有必要的。
4.3从试块混凝土应力测试结果看,压花锚张拉后,只在压花锚顶部出现拉应力,另外在张拉锚固端两侧也会出现拉应力,但拉应力值都很小,对混凝土不会产生危害,其余均为压应力。
第三篇:铁路路基工程施工工艺及处理方法研究论文
1铁路路基的施工工艺要点
施工前要做好准备工作,将路基范围内30cm的耕植土、杂填土、垃圾土等加以清除,等施工完工后再对边坡进行回填。在进行完清理后,要对填筑的路段进行碾压,让紧实度和密度可以满足规定要求。对于特殊路段如过湿地基、填挖交界及低填路基等,必须符合实际现场情况开展有效处理[1]。
1.1土方开挖施工
在对土方进行开挖的时候,要采取自上而下的方式,依照图纸开展,避免乱挖超挖等现象的出现。在开挖前要确定路床顶高,并通过实验的方法来确定下沉量,以保证在路床下的30cm处的压实度在96%以上。雨天情况下不能进行土方挖掘,并保证符合规定及要求。
1.2石方开挖施工
石方的开挖一定要从实际施工情况出发,根据地形及环境采取合理的爆破;在边坡的2m范围内,要采用光面进行爆破的控制,以确保边坡岩没有松动。进行的爆破一定要经过严密的实验,确认参数基础上对设计进行精确,以确保爆破的最终质量。利用爆破为石方开发奠定基础工作,并依照图纸的要求,严格控制开挖情况。符合路基填筑的爆破石方,可直接用于路基的填筑。开挖后大型石料多的情况下,应采取集中破碎方法,对颗粒进行二次破碎,以满足填筑立方的粒径要求。对于石料在现场采取的破碎要严格禁止。
1.3深挖路堑施工
排水设施是现场施工的关键工作,应在开挖前就做好准备。堑顶截水沟要实现顺利排水,就要依靠山体沟帮来强化与山体的紧密,减少并避免地表水的冲刷作用。路堑边坡的施工一定要依照图纸开展,路基在开挖后要遵从“横向分层、纵向分段、两端同步、阶梯掘进”原则推进开展。运碴与挖掘是两项密切相关工作,必须做好合理安排、妥善开展、互不影响,保证整体挖掘的顺利推进。
1.4深挖路堑边坡防护
对路堑进行深度挖掘,首先要对边坡给与充分的重视和稳定,并按照设计要求进行坡度施工。对于高度大或特殊的边坡,一定要在施工时对路堑边坡开展合理的观测。对于每段边坡的开挖,一定要及时和合理,在确认无需变更后才可进行防护工程及开挖。土质边坡段深埋砼桩作观测桩,石质边坡段在稳固石块中作观测标记代替观测桩。观测桩测量用光电测距仪和水平仪进行。
2铁路路基施工工艺控制
2.1精确并选择路基填料
填料中必须对最大颗粒的直径进行严格的要求和选择,并严格控制表层颗粒的情况,以确保施工的最终质量。基床的材料选择必须满足施工质量的基本要求,对存在质量问题的材料一定要及时处理,并对级别低的填料采取加固的处理。路堤填充必须保证是同等材料,这样才能保证不会因为颗粒导致的质量问题出现,确保整体的施工质量。
2.2对铁路基底进行强化处理
如果路基是松土或耕地,应采取合理的翻挖,并分层予以填充。如若经过池塘、沼泽等软地基,应采取合理的措施,对地基加以稳固等,一般采取的措施有:排水晾干、抛填土石、去除污泥等。
2.3做好路基填充及压实
路基的压实一般采用的是震动压路机协助开展,吨位数要符合标准要求,首先要平压之后进行震压,速度上也要掌握从慢到快的原则,采取先轻后重进行压实。压实宽度大于等于之前的设计值和旁坡的稳定值,要以铁路两侧的加宽度为主。同时还要注意,在进行填筑时,每隔三层就应对中线开展一次恢复。
2.4强化并保证路基基床的质量
采取多种措施强化、控制路基的填筑质量,并逐层进行压实和水量检验,以保证每层都符合标准质量的要求。基床要选择棱角清晰的类型,平整度、坡度一定要符合标准要求。边防工作一定要把握好稳定性,符合防护的要求,防护层、土石边坡面一定要保证严实性,绝不容许有任何的空隙出现。对设置了垫层的坡面,一定要垫、砌同步。
3铁路路基工程的主要处理方法
3.1基坑开挖方法
在铁路路基工程施工过程中,对基坑支护开挖施工提出的技术要求要更高。工程项目技术管理人员应该根据涵洞基坑支护经验深入调查整个现场情况,可采取分级开挖的方法来强化坑壁的稳定。
3.2解决路基不均匀沉降问题的方法
施工问题没有得到及时处理,所使用的路基填充料粒径方面存在着差异,以及填充料填筑后没有压实等问题的出现,都要予以充分的重视。3.3混凝土工程应对方法①混凝土必须在施工前进行详细的检查,确认模板的清洁度。②混凝土振捣应采用插入式的振捣器,以确保振捣的充实和紧密,并要注意插入要快、拔出要慢。混凝土不下沉、不冒泡、表面平坦是最主要的密实标志。③在施工时,应按照施工进度来振捣混凝土,并按照一定厚度、顺序和方向对混凝土分层浇筑。
参考文献:
[1]朱孟会.铁路路基工程施工现场管理探析[J].现代商贸工业,202_,(3):275-276.
第四篇:浅层折射波论文综述
浅层地震折射波法应用于隧道工程综述
引言
近年来,各种地球物理方法例如地震、电磁法、电法、磁法以及地质雷达等技术均在近地表探测中得到广泛应用。对地震方法而言,有折射波法、反射波法、面波法以及折射波和反射波联合应用等技术。折射波法由于简便,效率高,初至波易于识别,资料解释较容易等优点,在近地表地质研究方面发挥着重要作用,而且在不断地发展。
浅层地震折射波法自上世纪 30 年代提出以来,被广泛应用于工程地质调查中,无论在仪器野外采集、资料处理与解释还是在理论方法的基础研究方面都取得了巨大的进步。同其他地球物理勘探方法一样,数据质量是基础,而资料的处理则是关键,它们对于地质解释至为重要。尤其是在采集的数据不是很好的情况下,资料的处理则发挥着更重要的作用。虽然影响折射波解释精度的因素有很多,但是选择合理的处理方法来提高勘探精度,仍不失为一种行之有效的手段。
国内外发展现状
浅层折射波法作为工程物探的一种手段,是应用最早,也是较成熟的方法。1919 年德国人 L.明特罗普(Mintrop)首先运用了折射法
[1],当时主要应用于石油勘探。到 20 世纪 年代,就开始转用于民用工程勘探。最初在近地表地震探测中,震源、地震仪器和检波器都是用石油勘探中采用的方法和设备,激发地震波通常使用炸药震源。1939 年 EWing 在其文章《Geophysical investigations in theemerged and submerged Atlantic Coastal Plain》就提出了目前这种标准的纵测线接收系统和截距时间法
[2],以及传统互换法和延迟时间法。40 年代中期,随着工程建设项目的大量兴起,浅层地震勘探就开始在土木工程、交通工程以及其他工程地质中得到应用与发展,折射波方法己成为工程地质勘探中的一种常规方法。50年代,在工程勘察中,浅层地震勘探以折射波法为主,曾研究开发了多种数据采集技术和推断解释方法,研制了单道和多道工程地震仪,而且这些技术方法迄今仍在广泛应用
[3]。
浅层地震勘探技术的发展与地震仪器的不断完善和发展紧密相关。30-50 年代中期,使用的是计数型单道或多道浅层地震仪。这类仪器是测量锤击点到检波器(或两个检波器)之间的地震波传播时间,用数字的计时单位值给出观测值,从而得知波速的。震源一般用人工锤击,必要时使用小量炸药作激发震源。计数型浅层地震仪只能用于初至波测量,在求速度断面或观测点多时,生产效率很低,故不能得到较高的测量精度。
年代中期到 70 年代初,随着电子技术和感光材料的不断进步,研究开发各种波形表示型多道浅层地震仪。它们是以光点聚焦(或照相、传真)方式将地震波记录在电敏纸(或感光纸、照相纸、热敏纸)上的。这类仪器除了其波形显示方式具有直观显示、能进行续至波记录以外,波形显示本身能提供一些地震波的动力学特征(如振幅、频率等)。波形表示型仪器动态范围很小、频带窄、信噪比低、无法重复处理和加工记录;其解释方法是在示波图上读取波的初至时间,手工作图进行资料解释,效率较低,其精度取决于资料质量和解释人员的水平。80 年代随着信号增强型数字记录工程地震仪的问世和计算机技术的普及,进一步促进了浅层折射波法的发展。通过信号增强,提高了抗干扰能力,改进了观测精度和分辨率,仪器轻便、工作效率高、成本低,扩大了浅层折射波的应用范围。采集数据记录在磁带上,通过计算机进行处理,使那些手工解释难度很大的折射波方法很容易实现计算机自动成像
[46]。
近些年来,内置控制级微机、超大规模集成电路设计,具有采集与处理一体化功能的高精度综合工程地震仪,不断更新换代,其性能越来越强,精度越来越高,为浅层地震勘探应用技术的发展奠定了基础。国内从 1957 年开始将浅层地震勘探试用于资源勘探、工程地质调查等领域,当时浅层折射波法主要用于测定岩土介质的弹性。浅层地震勘探用于工程地质勘探,从 70 年代中期才逐步开始,80 年代开始大规模系统地发展起来。目前国内己有许多工程地震勘探生产单位和研究单位在从事工程勘探工作,并能生产出一些采用多功能微机控制系统和采集与处理系统的高精度工程地震仪器和设备。尽管中国的浅层地震勘探工作起步较慢,但其发展速度很快,无论在工程地质勘探还是在水文与环境地质勘察方面,都发挥着很大的作用。
资料处理发展现状
Thornburgh Hagedoorn[7]根据地震波传播的惠更斯原理,提出了一种图解法—波前法。
[8]根据几何地震学原理,给出了一种用相遇观测系统折射地震资料求取水平
均匀层折射界面的几何作图法—加减法,并应用加减法成功地解决了浅层折射波解释和地震反射折射勘探中的风化层校正问题。Bathelemes[9]、Tarrant
[10]、Barry
[11]等提出了延迟时间法(或时间项法)。延迟时间
[12]法(或时间项法)的基础是延迟时间的概念。延迟时间法具有方法简单、实用、在解释过程中作修改和校正十分方便的优点,但是存在缺乏有效的速度解析方法、受到倾角影响严重等缺点。因此该方法比较适用于倾角影响可以忽略的深部折射地震解释。
Adachi [13]、Mota
[14]、Johnson
[15]等提出了截距时间法。截距时间法是折射波解释技术中人所共知的一种方法。该方法比较简单,可适用于任意层数。但这种方法在地层倾角特别大或倾角与走向发生变化时,在旅行时间曲线上识别出每一层的困难较大,因此仅适用于地层呈平面和其倾角<10°的浅层折射地震解释。
Hawkins L.V.[16]在 1961 年提出互换法,它是一种最简单的方法,能确定简单的折射层结构和速度变化。当深度变化平缓,速度反差大时,该方法计算的深度比较准确。但当有一些较大的构造时,会产生虚假速度并对界面造成圆滑作用。
Palmer(1980,1981)提出的广义互换法(GRM),可以利用相遇剖面处理非常不规则的折射层[
17、18]。该方法由于使用了正反向时距曲线,时深转换因子对<20°的倾角不太敏感,因此可以处理倾角较大的折射层构造。而且在不规则折射界面和折射波横向速度发生变化或存在隐蔽带时,也可以详细地绘制出折射面的起伏。
姜贤斌,都彤宇[19]通过综合分析地震折射波法、高密度电法资料对杭宁铁路某隧道进行勘察。其中以浅层地震折射波法为主,在浅层地震折射波法确定构造在基岩界面上的位置基础上,再用高密度电法确定构造产状。取得以下成果:① 查明了隧址区覆盖层厚度,最深达24米左右;②推测隧址区内存在一条断层或岩性接触界线,编号为F1,F1 位于DK195+440~DK195+460 位置,走向北东,南东倾,倾角约75 度,视宽约20 米;③ 查明隧道围岩纵波速度及围岩级别,该隧道基岩界面波速沿测线差异较大,总体在2.35~5.35km/s 的范围内变化。
彭骁,王鹏利用折射波法对候家梁隧道进行勘察。候家梁隧道工程测区部分地形起伏较大,工区基岩上覆地层有相对低的速度,根据地震折射波法实测数据和分析结果,得出候家梁隧道物探成果图,得出的资料解释与实际情况相符,可信度高,为工程建设提供了有效的地质依据[20]。
地震折射波法以其能够确定折射界面的速度而广泛用于工程地质勘察。但因其解释受地表条件及界面形态的影响而表现出多解性。熊昌盛,顾汉明,陈毅敏,曹哲明以温福高速铁路某段测线内隧道工程地质探测为例,阐述了浅层地震折射波探测方法用于查明隧道的基岩埋深、围岩类别、断层位置等地质勘察任务所采用的举措,以提高其勘探精度。数据采集方面的举措:采用复合相遇追逐观测系统、采用小药量激发。对于初至折射资料的解释,采用了长排列相遇时距曲线的θ(x)求界面速度, t0 值求取界面深度的方法。根据野外记录绘制相遇时距曲线,利用复合排列对界面进行重复观测以及利用追逐时距曲线的平行性和互换点的等时性反复对比,以准确的识别和追踪基岩界面。在解释过程中,应结合工区工程地质资料,尤其在推断断层和速度突变段应仔细检查初至时间的准确性。实际资料解释结果表明,基于长排列追逐时距t0 差数法能较好地确定隧道围岩的速度
[21]。
蔡大江、白应甫通过结合沿海某工区的具体地震地质条件,应用浅层地震发射波与折射波法同步勘探新技术,较准确地推断解释出l.5km2面积基岩顶面埋深及第四系覆盖层主要层位的地质剖面。通过某工区浅层地震勘探的反射波法与折射波法同步观测技术应用实例分析,有以下三点认识:(1)结合工区地质任务,灵活应用反射波法与折射波法同步观测系统,做好初试阶段的展开排列试验工作,确定即能提高工作效率又能多方位拾取反射、折射波的观测及采集参数。该方法有较强的互补功能,超浅层条件下以折射波为主,较深层时以反射波为主。它能多方位地拾取、处理、应用地震反射、折射信息,强化了地质推断解释的可靠性。(2)根据目前国内浅层地震资料的处理状况,反射波资料应送往大型地震处理系统处理,可选用多种处理方法压制干扰,提高信噪比分辨率。折射波资料可在微机上实现人机联作解释,其效果较好。(3)在进行补充观测系统的野外观测时,应视地表条件来定。当地表覆盖物变为低速薄层时,应进行补充观测系统观测,增加直达波空间采样点数,求准其直达波速度。以上某工区的浅层地震反射、折射同步观测技术,属初次尝试,有请各位专家批评指导,使这一方法进一步完善和提高[22]。
王跃飞, 龚道平, 蔡大江通过对复杂山地条件、特长、大埋深的雪峰山公路隧道的工程地震勘探实例, 介绍和分析了根据实地情况开发和应用的高分辨率地震震源激发技术,复杂地形、地质构造条件下共排列双向变偏移距高分辨率反射波多次覆盖技术,环保型地震反射波与折射波法野外同步施工技术。由于地层岩石变质程度很深, 后期改造强烈,地形及地层十分复杂,在这种条件下不能应用地震反射波法的经典地震学原理与模型。所以提出了新的模型,复杂山区地形与地层之间的关系是难以预测的, 但可以把这复杂的关系归纳成3种特殊的类型进行分析, 这3种类型为: ①平行关系类型(地表接收边界与地下反射界面呈近似平行关系)。②正向斜交关系类型(地表接收边界与地下反射界面呈正向斜交关系)。③反向斜交关系类型(地表接收边界与地下反射界面呈反向斜交关系)
[23]。
由于高频大地电磁法EH2受外界干扰影响较大无法对隐伏断层的低阻异常做出准确的判断,同样浅层地震折射波法不能对隐伏的断层破碎带做出合理的解释,孙茂锐、罗术结合实例通过两种方法的相互印证可以推断出隐伏断层的位置和走向
[24]。
评述
(1)常规的解释方法(如哈莱斯法,截距时间法等图解法和解析法)计算出来的速度结构比较粗略,但方法简便、效率高,所以在生产中得到广泛应用。但这类方法往往只能解决地形起伏平缓,界面倾角较小,地层横向速度近似不变的比较简单的地质情况。
(2)折射波数值方法精度虽然比常规方法高,适于相对复杂的地质情况,但方法复杂,一般假设近地表层呈层状,速度只在水平方向上变化,因此在非层状结构或折射波难以识别的情况下,用这类方法就得不到满意的结果,而且在实际生产中尚未得到广泛应用。(3)在复杂的构造条件下,由于物探的多解性#单一的物探方法往往不能很好地解决问题$综合物探方法作为一种快速的普查手段,可以为物探异常提供更多的有力证据。
(4)近些年来,随着各种地震勘探仪器设备和数据处理技术的发展,高分辨率浅层地震勘探、瑞雷面波勘探方法、地震波层析技术(CT)等很多新方法、新技术不断地被引入工程与水文地震勘探领域,并取得了满意的效果,但是迄今尚未被广泛应用。因此,浅层初至折射波法至今仍是工程地震勘探中重要方法之一。
引用文献
[1] 赵鸿儒,郭铁栓,徐子君,唐文榜,孙进忠.工程多波地震勘探.地震出版社.1996.[2] 德力克·帕尔默.折射地震学(构造和速度的横向分辨率).地质出版社.1989. [3] 赵德亨,田钢,王帮兵.浅层地震折射波法综述.世界地质,202_,24(2):188-193. [4] 熊章强,方根显.浅层地震勘探.地震出版社.202_.
[5] 北京铀矿地质研究所浅层地震组.浅层地震探测方法与技术.原子能出版社.1982. [6] Stam J C.Morden developments in shallow seismic refraction techniques [J].Geophysics,1962,27:198-212.[7] Thornburgh H R.Wave-front diagrams in seismic interpretation[J]Bull Amer Assoc Petrodeum Geologists,1930,14(2):185-200.[8] Hagedoorn J G.The plus-minus method of interpretingseismic refraction sections[J].Geoph Prosp,1959,7(2):158-182.[9] Barthelmes AJ.Application of continuous profiling to refraction shooting[J].Geophysics,1946,11: 24-42.[10] Tarrant L H.Arapid method of determining the from of a seismic refractor from line profileresults [J].Geoph Prosp,1956.4:131-139.[11] Barry K M.Delay time and its application to refraction profile interpretation [C] //Musgrave A W.Seismic refraction prospecting.Tulsa, Okla: Soc Expl Geophy,1967:348-361.[12] Gardner L W.An area plan of mapping subsurface structure by refraction shooting[J].Geophysics,1939, 4: 247-259.[13] Adachi R.On a proof of fundamental formula concerning refraction method of geophysicalprospecting and some remarks [J].Kurruzrnoto.J Sci, 1954,2: 18-23.[14] Mota L.Determination of dips and depths of geological layers by the seismic refractionmethod [J].Geophysics,1954.19:242-254.[15] Johnson S H.Interpretation of splitdip refraction data in terms of plane dipping layers[J].Geophysics,1976,41: 418-424.
[16] Hawkins L V.The reciprocal method of routine shallow seismic refraction investigation[J].Geophysics,1961,26:808-819.[17] Palmer D.The generalized reciprocal method of seismic refraction interpretation [M].Tulsa, Okla.: Soc Expl Geophy,1980:104.[18] Palmer D.An introduction to the generalized reciprocal method of seismic refraction interpretation [J].Geophysics,1981,46: 1508-1518.[19]姜贤斌,都彤宇.浅层地震折射波法与高密度电法在隧道工程勘察中的应用[J].中国水运.202_,8(12):209-211.[20]彭骁,王鹏.浅层地震折射波法在候家梁隧道地质勘查中的应用[J].工程地球物理学报.202_,10(2):631-636.[21]熊昌盛,顾汉明,陈毅敏,曹哲明.提高浅层地震折射波法在隧道勘察效果的举措[J].工程地球物理学报.202_,1(5):452-456.[22]蔡大江,白应甫.浅层地震反射波与折射波法同步勘测应用实例[J].工程勘探.1996,1:69-71 [23]王跃飞, 龚道平, 蔡大江.复杂山地条件、特长、大埋深公路隧道工程地震勘探技术方法[J].物探与化探.202_,31(1):82-85.[24]孙茂锐、罗术,高频大地电磁法与地震折射波法在某隧道隐伏断层勘探中的综合应用[J].工程地球物理学报。202_,15(7):652-660.
第五篇:排水与降水施工工艺
排水与降水施工工艺
202_-12-16 11:12【大中小】【打印】【我要纠错】
一、施工准备
1、挖土方前,应根据工程地质资料反映的土质和地下水位情况制定排水或降水方案,并根据方案配置施工机具。
2、基坑(槽)排出的地下水应经过沉淀处理符合环保要求后方能排入市政下水道或河
沟。
二、操作工艺
1、大型土方施工,应在基坑顶四周设置临时排水沟或截水沟,其截面宜为300~400m(宽)×400mm(深),纵向坡度宜为0.5%.临时排水沟或截水沟的设置应尽量与永久性排
水设施相结合。
2、在地下水位较低和土质较好的情况下,基坑底四周设置排水沟、集水井,采用明沟排水的方法,必要时可在中间加设小支沟与边沟连通。排水沟的截面宜为300~400m(宽)×400mm(深),纵向坡度宜为0.5%.集水井的截面宜为600mm(长)×600mm(宽)×1000mm(深),@20~30m设一个。基坑底地下水由排水沟流入集水井,然后用高扬程潜水泵排走。
3、当地下水较大而土质属细砂、粉砂土时,基坑挖土容易产生流砂现象,需用围蔽截
水和人工降低地下水位等方法。
4、围蔽截水的施工方法可以选择钢板桩、钢筋混凝土排桩、地下连续墙、定喷桩幕墙、旋喷桩、深层搅拌桩等,其可根据施工地形、水文地质资料和施工方法等确定,并在施工组织设计中确定。
5、采用人工降低地下水位的方法,应根据挖土的深度和规模,选择钻孔集水井降水或轻型井点降水,其井点的布置数量和形式,要根据含水层渗透系数和涌水量计算确定,并相
应配套抽水设备。
三、施工注意事项
1、抽水设备的电器部分必须做好防止漏电的保护措施,严格执行接地、接零和使用漏
电开关三项要求。施工现场电线应架空拉设,用三相五线制。
2、在土方开挖后,应保持降低地下水位在基坑底500mm以下,防止地下水扰动基底
土。
3、在降水过程过程中,应防止相邻及附近已有建筑物或构筑物、道路、管线等发生下沉或变形,必要时与设计、建设单位协商,对原建筑物地基采取回灌技术等防护措施。