首页 > 文库大全 > 实用范文 > 其他范文

有线电视宽带的接入网技术论文(共5篇)

有线电视宽带的接入网技术论文(共5篇)



第一篇:有线电视宽带的接入网技术论文

1我国有线电视行业的发展现状

我国的有线电视行业起步比其他国家晚,1958年进行试播的北京电视台是中国有线电视起步的重要标志,20世纪70年代初才真正实现了电视节目通过微波线路的传播,发展时间较短使我国在有线电视行业经验不足,主要通过模仿与借鉴的方式对发展过程中的缺陷进行弥补,尚未形成一套属于自己的完善体系,无论是在电视节目采集、编辑和播出以及有线电视信号传输、覆盖和接收等各方面都存在一定的问题,以传统有线电视信号的传输、覆盖和接收为例,由于我国幅员辽阔、人口众多,使有线电视信号频率资源紧张,许多相对偏远的地区较难通过微波、卫星和光纤等途径接收到信号;且传统有线电视信号的接收情况很容易受到外界环境干扰,建筑物等的遮挡都容易对信号传输产生不良影响。此外,由于我国地形情况复杂,山地、高原等复杂地形都给信号基站和天线的架设增加了难度,对有线电视信号的传输过程造成了极大影响。

2宽带接入网技术在有线电视行业的优势

2.1运用有线电视宽带接入网技术

提高信号传输速度有线电视宽带接入网技术将网络信号作为信息传播的载体,以宽带网络作为途径进行信号传输工作,相关从业者通过用宽带技术取代原有的卫星和管线信号传输模式,保证信号传输速度,让有线电视用户在享受电视上网的同时,保证其对网络速度的需求。通过宽带网络与有线电视的结合,有线电视用户不需要通过繁杂的身份验证对有线电视与网络进行连接,只需要对计算机进行宽带连接就可以保证电视信号传输,极大节约了用户的时间。

2.2运用宽带接入网技术降低用户费用

在将宽带接入网技术与有线电视进行结合后,电视信号的传输不再需要传统的信号基站以及繁杂的天线和光缆的架设,仅仅通过有线电视端口与宽带网络之间的连接就可以实现有线电视信号接收,这种宽带网络作为信息传输载体的方式尽可能地为有线电视行业从业者节省了成本开支,自然降低了有线电视用户需要缴纳的费用,给用户带来了极大便利。

2.3利用有线电视宽带接入网技术

丰富用户的生活传统的有线电视信号传输过程极易受到外界环境的影响,因此,在我国偏远地区及受到高层建筑物遮挡的地区很容易出现信号接收问题,影响有线电视用户的体验,且由于受到信号频率资源限制,每个地区所能收到的频道十分有限,给有线电视用户提供的选择已经无法满足其根本需求。但通过宽带接入网技术,信号传输可以打破环境限制,为用户提供更好的观影体验及更多的频道选择空间。

3宽带接入网技术在有线电视行业的应用

3.1HFC系统

HFC即单向光纤同轴混合网,是以宽带网络为载体的信号传输与转化系统,可直接实现有线电视端口与网络之间的联系,在节约成本的同时提高信号传输速度,为有线电视用户提供电视上网、网络点播等传统有线电视无法提供的服务。

3.2光纤到楼技术

光纤到楼技术顾名思义就是将宽带网络作为信号传输途径,将光纤作为载体具体传输到一片区域中的所有用户,简称为FTTB技术。该技术完成了区域内每座楼房的信号分拨传输,使每栋楼的信号传输工作都能独立进行、互不干扰,自然也就使信号传输效率得到了极大提升。

3.3光纤以太网接入技术

光纤以太网接入技术即运用宽带网络实现一定区域内信号传输工作连接,最终形成合理化的网络体系,在这样的体系中,有线电视用户可以实现一定程度的信息和资源共享,且不同的网络体系之间信号传输过程是互不干扰的,最大程度上加快了系统内用户的信息传输效率,被广泛运用于公司等商业领域。

4结语

有线电视宽带接入网技术作为信息技术飞速发展的产物,正在逐渐渗透进人们的生活,并通过运用有线电视宽带接入网技术提高信号传输速度,降低用户费用,丰富有线电视用户的娱乐方式等途径,不断提高其生活质量,因此,相关从业者要充分利用这门技术,为人们提供更便利的生活方式。

第二篇:有线电视宽带接入网技术研究论文

【摘要】随着互联网技术的不断发展和推广,结合网络传送的多样化信息,其中多媒体数据成为信息带宽的重要组成部分。因此,有线电视在接入网技术成为现阶段电视技术发展的重要方向。在不断发展的市场环境中,有限电视面临着一定的竞争,因此需要有效的推广有线电视宽带接入网技术得到有效的推广,以此促使有线电视得到不断的发展。本文主要是对有限电视宽带接入网技术和实践应用案例进行研究与分析。

【关键词】有线电视;通信论文;接入网技术;应用案例

随着社会经济和社会环境的不断发展,促使人们对电视功能的要求也在不断地提升,有线电视在不断发展的过程中受到网络平台和技术的影响,以此促使有线电视的发展空间受到阻碍。同时,在实际发展的过程中,互联网技术也在不断发展,促使有线电视和互联网技术被有效的结合到一起。为了促使有线电视得到有效的发展,将其与互联网有效的结合到一起是发展的重要方向。因此,有线电视宽带接入网技术在实际应用中得到有效的推广,其依据传统意义上的电视特点,促使有线电视和互联网都获取了更多的利益。

一、有线电视宽带接入网技术的优势

依据对实际应用案例的研究与分析,可以发现其具备以下几点优势:第一,不需要重新安装就可以实现上网看电视双同步。在应用有线宽带上网的过程中不用重新布线这是最显著的特点,不但是依据家中现有的电视双向网端就可以接入网络用户的要求,不但可以进行电视节目的观看,还可以对网络的信息进行筛选观看。第二,速度快。依据有线电视进行上网,可以获取较快的网络速度,最高可以达到36Mbps,而最高的上行速度在10Mbps之间,与其它形式的宽带相比,这种速度是非常快的,可以有效的满足客户需求。同时,其打开计算机就可以进行上网,与其他形式相比,做到了真正意义上开机就上网的目标。第三,价格便宜。依据有线电视可以不占用电话线,因此可以排除一项消费,之后有线电视在进行上网过程中的收费也非常便宜,以此促使应用者可以有效的进行上网。同时与宽带两者之间的竞争也会有效的降低价格。第四,服务工作较多。其可以为应用者提供多样化的服务,其中包括网上购物、会议电视、视频点播、下载、办公、在线游戏以及教育等。第五,灵活拓展。其拓展性主要表现为两个方面:一方面是可以依据先进的技术和设计提升应用者的数量;另一方面是在网络中心交换设备不够的过程中,为了满足消费者需求,只要叠加网络交换设备就可以了[1]。

二、有线电视网络宽带接入网技术的应用

1、对旧系统的改善。其主要分为以下几点:第一,应用光缆干扰同轴电联。第二,依据双向楼以及其高性能的双向延长放大器来进行替换。第三,依据高屏蔽的分支器或是高隔离度的定向耦合器进行转换。第四,将以往的应用者终端盒转化成高屏蔽的带数据输出口的终端盒。除此之外,对以往有线电视的网络实施改善,相应的成本支出就会提升,因此需要依据业务减少成本支出。同时,也要对业务规划进行全面的观察,在建网的过程中注重网络数字化改革的重要认为,更多的关注应用者的利益,在进行入网技术的过程中,不断要注重利益的发展,还要结合简单的技术,以此提升参与的人群,从而推广技术的应用[2]。

2、有线电视接入网技术的挑战。在实际安装的过程中,回传信号可以在分配的过程中获取有效的频率和频谱,但并不是很高,之后结合外界电磁辐射与设备内部以此对有线电视网络内部具备设备造成干扰,以此形成较大的噪音。由此而见,在噪声的影响下,信号在传播过程中出现的误码率就会导致噪声逐渐增加,严重的还会影响现有的信号。要想解决问题,需要从以下几点研究:第一,在不是CableModem用户中,实施上行频带阻断零件。第二,一般情况下,可以在器件、设备等应用的过程中融入高性能屏蔽零件进行。第三,提升光节点,同时管理器评价应用者的数量,将其约束在五百之间,若是降到了一百二十五或是二十五之间,那其可应用的上行带宽就有很大的范围。第四,较为灵活的协议。3、有线电视接入网的过程。其在实施的过程中主要分为以下两个步骤:一是,明确其开通的条件。在开通有线电视上网条件的过程中,需要具备网络用户证,以及要求应用者所在小区的有线电视需要开通双向回传的能力。二是,填写申请表。先是需要应用者去办理有线电视网络宽带接入网的业务过程中,都进行业务申请登记。通常情况下,可以依据不同形式进行网络收费,一种是家庭应用者,另一种是商业应用者。应用者在申请中,可以结合自身需求选择不同的收费形式,签订协议,之后进行安装[3]。

结束语:

我国有线电视宽带在接入网络技术的发展较为缓慢,其中受到了所在区域和人口的影响,以此在短时间内得不到有效的推广。现阶段的有限电视宽带接入网技术在我国得到了有效的应用,其中有多重接入的形式存在。

参考文献

[1]杨海.有线电视宽带接入网技术及其应用研究论述[J].信息通信,2016,03.[2]金志刚,鹿凯宁,李津,姜琳.有线电视宽带接入网技术的应用[J].天津大学学报,2013,05.[3]邓伟文.有线电视宽带接入网技术的优点及方案[J].科技传播,2012,12.

第三篇:各种接入网技术论文

宽带接入网论文

姓名:

班级:通信0801

学号: 07

各种接入网技术

摘 要:随着社会经济的发展,人们对各种新业务特别是宽带综合业务的需求日益增加,一系列接入网新技术应运而生,其中包括应用较广泛的以现有双绞线为基础的铜缆新技术、混合光纤/同轴(HFC)、网技术和混合光纤/无线接入技术、无线本地环路技术(WLL/DWLL)及以太网到户技术[ETTH(光纤到路边、光纤到大楼、光纤到Anywhere的统称)+ETTH]。关键字:ADSL 光纤 无线 以太网接入

通信技术迅猛发展,电信业务向综合化、数字化、智能化、宽带化和个人化方向发展,人们对电信业务多样化的需求也不断提高,同时由于主干网上SDH、ATM、无源光网络(PON)及DWDM技术的日益成熟和使用,为实现话音、数据、图象“三线合一,一线入户”奠定了基础。如何充分利用现有的网络资源增加业务类型,提高服务质量,已成为电信专家和运营商日益关注研究的课题,“最后一公里”解决方案是大家最关心的焦点。因此,接入网成为网络应用和建设的热点。所谓接入网是指骨干网络到用户终端之间的所有设备。其长度一般为几百米到几公里,因而被形象地称为“最后一公里”。由于骨干网一般采用光纤结构,传输速度快,因此,接入网便成为了整个网络系统的瓶颈。接入网的接入方式包括铜线(普通电话线)接入、光纤接入、光纤同轴电缆(有线电视电缆)混合接入、无线接入和以太网接入等几种方式。双绞线为基础的铜缆新技术。当前,用户接入网技术主要是由多个双绞线构成的铜缆组成。耗资较大,怎样发挥其效益,并尽可能满足多项新业务的需求,是用户接入网发展的主要课题,也是电信运营商应付竞争、降低成本、增加收入的主要手段。发展新技术,充分利用双绞线,是电信界始终关注的热点。所谓铜线接入技术,是指在非加感的用户线上,采用先进的数字处理技术来提高双绞线的传输容量,向用户提供各种业务的技术,主要有数字线对增益(DPG)、高比特率数字用户线(HDSL)、不对称数字用户线(ADSL)、甚高数据速率用户线(VDSL)等技术。

混合光纤/同轴(HFC)网。混合光纤/同轴网是一种基于频分复用技术的宽带接入技术,它的主干网使用光纤,采用频分复用方式传输多种信息,分配网则采用树状拓扑和同轴电缆系统,用于传输和分配用户信息。HFC是将光纤逐渐推向用户的一种新的经济的演进策略,可实现多媒体通信和交互式视象业务。目前,包括ITU-T在内的很多国际组织和论坛正在对下一代的结合和ATM的数字HFC系统进行标准化,这必将会进一步推动其发展。一种光纤到楼、光纤到路边、以太网到用户的接入方式。它为用户提供了可靠性很高的宽带保证,真正实现了千兆到小区、百兆到到楼单元和十兆到家庭,并随着宽带需求的进一步增长,可平滑升级实现了百兆到家庭而不用重新布线。完全实现多媒体通信和交互式视象业务等业务。如海军莲宝二里生活小区宽带接入系统采用此技术。

无线用户环路接入网。无线用户环路又可称为“无线用户接入”,它是采用微波、卫星、无线蜂窝等无线传输技术,实现在用户线盲点偏远地区和海岛的多个分散的用户或用户群的业务接入的用户接入系统。它具有建设速度快、设备安装快速灵活、使用方便等特点。在使用无线的情况下,用户接入的成本对传输距离、用户密度均不敏感。因此对于接入距离较长,用户密度不高的地区非常适用。

ADSL(Asymmetric Digital Subscriber Line,非对称数字用户线)是一种通过现有普通电 话线为家庭、办公室提供宽带数据传输服务的技术。ADSL即非对称数字信号传送,它能够在现有的铜双绞线,即普通电话线上提供高达8Mbit/s的高速下行速率,{由于ADSL对距离和线路情况十分敏感,随着距离的增加和线路的恶化,速率会受到影响}远高于ISDL速率;而上行速率有1Mbit/s,传输距离达三到五千米。ADSL技术的主要特点是可以充分利用现有的铜缆网络(电话线网络),在线路两端加装ADSL 设备即可为用户提供高宽带服务。ADSL的另外一个优点在于它可以与普通电话共存于一条电话线上,在一条普通电话线上接听、拨打电话的同时进行ADSL传输而又互不影响。用户通过ADSL接入宽带多媒体信息网与因特网,同时可以收看影视节目,举行一个视频会议,还可以很高的速率下载数据文件,这还不是全部,你还可以在这同一条电话线上使用电话而又不影响以上所说的其它活动.安装ADSL也极其方便快捷。在现有的电话线上安装ADSL,除了在用户端安装 ADSL通讯终端外,不用对现有线路作任何改动。使用ADSL(Asymmetric Digital Subscriber Line,非对称数字用户线)技术,通过一条电话线,以比普通MODEM快一百倍浏览因特网,通过网络学习、娱乐、购物,享受到先进的数据服务如视频会议、视频点播、网上音乐、网上电视、网上MTV的乐趣,已经成为现实。

光纤接入是指局端与用户之间完全以光纤作为传输媒体。光纤接入可以分为有源光接入和无源光接入。光纤用户网的主要技术是光波传输技术。目前光纤传输的复用技术发展相当快,多数已处于实用化。复用技术用得最多的有时分复用(TDM)、波分复用(WDM)、频分复用(FDM)、码分复用(CDM)等。根据光纤深入用户的程度,可分为FTTC、FTTZ、FTTO、FTTB、FTTH等。光纤通信不同于有线电通信,后者是利用金属媒体传输信号,光纤通信则是利用透明的光纤传输光波。虽然光和电都是电磁波,但频率范围相差很大。光纤接入网是指接入网中传输媒介为光纤的接入网。光纤接入网从技术上可分为两大类:有源光网络(AON,Active Optical Network)和无源光网络(PON,Passive Optical Network)。有源光网络又可分为基于SDH的AON和基于PDH的AON;无源光网络可分为窄带PON和宽带PON。由于光纤接入网使用的传输媒介是光纤,因此根据光纤深入用户群的程度,可将光纤接入网分为FTTC(光纤到路边)、FTTZ(光纤到小区)、FTTB(光纤到大楼)、FTTO(光纤到办公室)和FTTH(光纤到户),它们统称为FTTX。不是具体的接入技术,而是光纤在接入网中的推进程度或使用策略。接入环路的三种系统结构分别为FTTN、FTTC和FTTH在网 络发展过程中,每种结构都有其应用和优势,而目在经济地向全业务问演进过程中,每种结构都是关键的一环。FTTN给人们带来的好处是它将光纤进一步推向用户网络。它建立起一个接太平台,能提供话音、高速数据和视频业务给众多的家庭而不需要完全重建接入环路和分配网络。根据需求,可以在光纤节点处增加一个插件,即可提供所需业务。在因业务驱动或网络重建使光纤节点移到路边FTTC或家庭(FTTH)之前,FTTN将叠加于并利用现有的铜线分配网络。这种网络结构的基本要求是为了提供宽带或视频业务,节点与住宅的距离应当在4000到5000英尺的范围内。而当今的节点一般的服务距离可达12000英尺。因此,每个服务区需要安装3到5个FTTN节点。FTTC或FATH光纤(光纤几乎到家)比FTTN多几个优点。当采用FTTC重建现有网络时,可消除由电缆传输可能带来的误差。它使光纤更深入到用户网络中,这可减少潜在的网络问题的发生和由于现场操作引起的性能恶化。目前FTTC是最健壮和“可部署的”的网络,是将来可演进到FTTH的网络。它同样是新建区和重建区最经济的网络建设方案。

无线接入是指从交换节点到用户终端之间,部分或全部采用了无线手段。典型的无线接入系统主要由控制器、操作维护中心、基站、固定用户单元和移动终端等几个部分组成。各部分所完成的。控制器通过其提供的与交换机、基站和操作维护中心的接口与这些功能实体相连接。控制器的主要功能是处理用户的呼叫(包括呼叫建立、拆线等)、对基站进行管理,通过基站进行无线信道控制、基站监测和对固定用户单元及移动终端进行监视和管理。操作维护中心负责整个无线接入系统的操作和维护,其主要功能是对整个系统进行配置管理,对各个网络单元的软件及各种配置数据进行操作:在系统运转过程中对系统的各个部分进行监测和数据采集;对系统运行中出现的故障进行记录并告警。除此之外,还可以对系统的性能进行测试。基站通过无线收发信机提供与固定终接设备和移动终端之间的无线信道,并通过无线信道完成话音呼叫和数据的传递。控制器通过基站对无线信道进行管理。基站与固定终接设备和移动终端之间的无线接口可以使用不同技术,并决定整个系统的特点,包括所使用的无线频率及其一定的适用范围。固定终接设备为用户提供电话、传真、数据调制解调器等用户终端的标准接口--Z接口。它与基站通过无线接口相接。并向终端用户透明地传送交换机所能提供的业务和功能。固定终接设备可以采用定向天线或无方向性天线,采用定向天线直接指向基站方向可以提高无线接口中信号的传输质量、增加基站的覆盖范围。根据所能连接的用户终端数量的多少;固定终接设备可分为单用户单元和多用户单元。单用户单元(SSU)只能连接一个用户终端;适用于用户密度低、用户之间距离较远的情况;多用户单元则可以支持多个用户终端,一般较常见的有支持4个、8个、16个和32个用户的多用户单元,多用户单元在用户之间距离很近的情况下(比如一个楼上的用户)比较经济。移动终端从功能上可以看作是将固定终接设备和用户终端合并构成的一个物理实体。由于它具备一定的移动性,因此支持移动终端的无线接入系统除了应具备固定无线接入系统所具有的功能外,还要具备一定的移动性管理等蜂窝移动通信系统所具有的功能。如果在价格上有所突破,移动终端会更受用户及运营商的欢迎。近一时期,服务提供商一直在兜售高密度光纤骨干网,企业用户也在等待这类高速服务的提交。尽管保证提供海量可用带宽的高密度光纤网已经建成,但对网络服务的需求却被封闭在基于时分复用(TDM)的本地环路接入技术的框框之内。对带宽需求不断变化的企业用户由于为增加一条T-1线路需要等待数周或因升级到T-3线路而等上几个月而感到不满。一种非常具有发展前景的解决方案将使现在正在部署的光纤带宽,能够利用软件来取代穿过僵化的基础设施的硬连线网络接入来配置多种服务,并且每种服务可以具有不同的服务水平以及软件命令远程调节的速度保证。这类以满足对多种服务额外带宽需要为目标的软件可调服务,只需几天而不是数周的时间,并且无需高昂的工程费用或现场升级就可以完成配置,在需要时可以立即精确地提供所需带宽容量。以太网可以实现这一目标。以太网非常适于从光纤网络提交软件可调节的带宽,它具有普遍的可用性并且价格低廉,可以很容易达到1Gbps的速度,并且不久可以达到10Gbps的速度。如果目前连接到家门口的光纤支持以太网技术的话,一条连接线路可以达到从每秒64K到数千兆位的任何速度,并可以用于访问所有的广域网服务。如此灵活提供的服务代表着目前DSL和基于有线电缆宽带服务之后的下一个高速技术,它们将使企业用户最终可以利用传输基础设施核心中的光纤部署。提交基于以太网的服务所需的条件是智能的光纤接入平台,这种平台使服务提供商可以从传统的基于TDM的服务迁移到优化的数据包服务,并使用户可以在提供带宽保证的多服务光纤连接上传送如IP语音这类多服务、广域传输流。

随着电信行业垄断市场消失和电信网业务市场的开放,电信业务功能、接入技术的不断提高,接入网也伴随着发展,不同的接入技术间的竞争与综合使用,以及要求对大量电信业务的支持等

参考文献:

[1]张喜云.《宽带接入网技术》.西安电子科技大学出版社.2009.02 [2]雷维礼.《接入网技术》.清华大学出版社.2003.8 [3]韦乐平.《接入网》.人民邮电出版社.2006.06 [4]www.feisuxs

第四篇:有线电视宽带网络结构

1.概述

光技术的快速发展给有线网络带来了革命性的变化,有线网络需要考虑所有业务(E-mail、语音、视频等)的基带传输(模拟的和数字的)以及IP数据传输的特性。问题的关键是能提供一个灵活的、可升级的而且在未来若干年内能够使用的网络。有线电缆正通过提供新的和强制性的业务来解决这 “最后一英里”的问题。本文的焦点是放在物理层或者实际的网络。与任何其它的网络相比,宽带有线电视使光纤应用于网络之中。其目标是建成特定宽带业务网。有线网络开创性地把光纤和传统的同轴电缆结合在一起成为一个混合网络。这个混合光纤同轴(HFC)网络对于有线网络来说具有战略上的重要性。光纤把模拟和数字电视从前端向终端发送。该技术目前可把光纤信号往用户家庭的几英里范围内发送。同轴电缆再把宽带业务传送至家庭。最后一英里的同轴电缆被用于支持譬如电话之类的可选业务的传输媒体。

有线运营商已经把同轴电缆网络进行升级以支持双向通信,从而使用户可以享受他们的多项服务,这当然要追加投资。当新的HFC网络完全实现后,将具有许多好处,它们包括: •有线电话的能力 •高速Internet接入

•有线电视频道数目的增加(超过200个模拟的和压缩的数字频道)•利用机顶盒的视频点播(VOD)能力 •交互式电视

•为满足新的数字电视标准而建立的基础结构,所有标准都是基于HFC骨干网。

本文将阐述两种HFC网络结构:“供电范围节点”(PDN)和“小型光纤节点”(MFN)。PDN结构或类似的变种是北美配置的HFC网络的主要代表,它能支持许多新的业务。PDN与其它HFC结构的不同之处在于,节点的大小并不是由固定用户数决定的,而是由光纤节点接收机的数量决定的。RF放大器和网络用户终端可以由单个网络供电(AC)。MFN是网络发展的下一步,它表现了一个深层次光纤结构。MFN是非常重要的,因为它可去除同轴有线电缆段上所有的放大器(除了必不可不的以外)。这不仅仅增加了可靠性,而且还保证了宽带业务所需要的带宽。首先,本文将定义一些术语和有线电视产业和正在建造的HFC网络的相关信息。

2.传统的同轴有线电视网络

一个简单的有线电视系统从前端到终端,包括接收卫星等电视信号源的接收设备。从这些源来的信号将通过有线网络发送。然后被放大,再把模拟视频传送给传统的全同轴有线电缆网络。

有线电视系统是基于载波的,每套节目均占用一个载频。载波的幅度是不断变化的,这叫幅度调制(AM)。所有的视频信道将在一个频分多路复用器(FDM)内合并起来,北美每个载波距离是6MHz。有线电视系统以两个方向传送信息,一个是向用户传送,称为前向路径(或称下行),另一个是从用户那里来,称为反向路径(或称上行)。在美国,前向信道被放置在54MHz以上的频率上,而5到42MHz之间的频率就被分配给反向信道。

显示了一个代表性的有线电视袭用的传输频谱,它的前向路径信道达到了860MHz。在前向路径,模拟信道是从54到550MHz,而数字信道是从550MHz到860MHz。有线电视网络是由三个主要部分构成的:干线、馈线和引线。干线是用于覆盖广大的距离,经常超过10英里。当干线是由同轴电缆组成时,那么每2000英尺就需要一个放大器。令人吃惊的是,有线电视系统的干线部分只占了整个系统总长度的百分之十二。放大器的级联限制了带宽,典型的级联具有20到40个放大器。因为每个放大器都是有源部件,所以每个放大器都会给信号加入噪声和非线性失真,并且会带来放大器链的不可靠性。

有线电视系统的馈线部分面向用户的接口。它最大的长度约为1.5英里。这一限制是因为RF能量被分配对各个家庭进行馈送。因此,RF电平与在长距离干线部分的电平相比,要相对更高一些。这些更高电平进入了放大器的非线性区。结果,导致质量指标下降。在有线电视系统中,大约百分之三十八的长度是馈线部分。

引线是从分散的馈线进入家庭的同轴电缆。它最大的长度为400英尺,但在典型情况下要少于150英尺。一个有线电视系统中的大约一半的长度是引线和家庭中的布线。有线电视系统中的馈线部分是变化很平凡的部分。每天都有新的用户增加,和老用户退出。美国每年大约有20%的人搬往新的住处。这样就造成20%的用户数波动。对于馈线而言,支持这一持续不断的用户数波动是非常重要的。它必须使网络具备工作有效性、物理健壮性并且易于配置。

图1.一个有线电视系统传输频谱

放大器被用于补偿传输电缆和信号分配器、分支器的频率失真。因为放大器的电路是单向的,所以放大器单元必须先在两个方向上分离信号流。信号分离是利用双工器电路进行的。在经过双工之后,每个信号被放大,然后利用同样的双工器连接到同轴电缆上。总而言之,这些早期的有线电视网络向用户发送模拟视频信号是非常好的。但由于放大器的级联,这些网络并不适合于实时的双向高带宽业务,最主要的是网络中单收集点聚集所有回传信号的漏斗效应。使之从80年代中期陆续开始实施光纤同轴电缆混合(HFC)传输结构。3.混合光纤同轴(HFC)有线电视系统

因为有线电视和通信公司不断努力引入新的业务,必须找到一个合理的成本提高网络容量的方法。这个困难问题的一个极其出色的解决方案,就是HFC系统中的光电子学的实现。光电子学技术在高容量交互式多媒体传输所需的HFC网络的发展上具有极其巨大的影响。这种技术的引入使得最初为视频业务而设计的网络能够为各种交互式视频、数据和语音业务提供可靠的带宽。

HFC结构使以一种成本高效的方式提高带宽、信号质量和可靠性成为可能,这种方式能够减少维护成本和保持操作人员界面友好性。它使两种业务成为现实。在干线部分覆盖低损耗的光纤能够去除干线上的放大器。这也就使同轴电缆大大缩短,典型的是四到六个放大器。这样带来的好处包括大大减少放大器中断的脆弱性、减少带宽限制和由于放大器串联而导致的噪声积累,以及大大简化输入部分。采用双向传输有两个原因。第一,光纤本身不再是干扰信号的入口了。第二,有线电视系统被分割成大量的小型有线电视系统,而且这些小型系统彼此隔离。如果在某个小型有线电视系统入口形成干扰的话,该干扰将不会削弱整个有线电视系统其它部分的性能。

有线电视信号的光传输用单模光纤来完成,该光纤在1310nm的波长处大约有0.35dB/km的衰减,在1550nm的波长处大约有0.25dB/km的衰减。激光波长的选择是基于网络设计标准,包括成本、模拟性能要求以及传输距离要求等。光纤的衰减在合理的温度范围内是固定的,而且与RF频率无关。

引入HFC网络的光节点或者光纤节点(FN),经常被安放在户外,譬如一个基座上或者悬挂在架空绞线上。光纤节点接收光信号,把它转化为电信号,并放大,然后向本地用户发送。在返回方向上,节点收集5-42MHz带宽范围内的信号,并把它们以光的方式传送回前端进行处理。在 “传统”的HFC网络中,每个光节点名义上服务500-2000个家庭。核心网络驱动器是低成本的,而且在噪声和失真方面对模拟视频信号有良好的性能。终端用户可以接收到经模拟视频残留边带(VSB)调制的78个RF信道。收费频道的可选择控制和收看前预付费通过用户机顶盒终端实现。

HFC结构的主要优势之一,是用户数可增加,并以多种格式携带多种类型信息的能力。

HFC有线电视网络和电话网之间的区别是可用宽带宽传送模拟电视。在美国,大约有3亿模拟电视机在使用,基本上都接入了有线电视。实际上,在这个国家有电视的家庭比有电话的家庭多。HFC为利用低成本电视发送设备提供了充足的带宽。

要达到这些目标,需要四种关键技术: •高能量的1550nm光纤可用于携带交互式数字电视并经“多电平正交调幅”(M-QAM)的载频信号,以及为简化光纤结构而降低网络成本的接入技术。•利用同步光纤网络(SONET)多路复用器来进行综合数字业务传输,对于建造高速多媒体接入网络是非常关键的。•波分复用(WDM)和密集波分复用(DWDM)不仅仅增加带宽,而且还用于光路由和降低接入成本。

•当网络光纤数量不断增长时,无源光技术对成本和性能有着极其关键的作用。

决定最佳接入结构的是足够的带宽宽度, 这对于广播和交互式小范围广播而言是必须的。HFC网络有四个与传送交互式带宽有关的因素:频率、空间多路复用、光谱效率以及光波长。

频率决定通道大小(750MHz、862MHz或1GHz),以及决定副载波提供什么类型信号的能力。每个频率都可以当业务设置改变时,随时使用,这与其它结构相比提供了一种独特的灵活性。空分复用决定了骨干网中的光纤是如何运行和如何达到每个节点的,以及如何装载它们。频谱效率允许随256-QAM或64-QAM调制技术改变,这些技术能够有效地提高频谱利用率。最后,多种光波长,不管是DWDM或者1310/1550的结合,都可以用于一个特定的光纤中以用来提高容量。

处理好HFC反向信道是极其重要的。为了解决潜在的光纤性能的问题,Fabry Perot(FP)和无冷却分布式反馈(DFB)激光现今均被用于网络中,靠的是业务数量的增加和性能的提高。从前端到用户端距离一定时,光纤配置得越长,网络对电入口的影响就会越小。由于光纤被配置得很长以进行前向传输,使RF的级联长度缩短,提高了可靠性和降低了成本。

对于语音和数据而言,通常的选择----至少在目前----便是SONET技术。但是SONET在视频传输方面的效率并不高。把一个或多个视频信号压缩至数字业务第三层次(DS-3)速率的视频编解码器的成本很高,而且与传统传输系统相比,它们的性能规格比更差。此外,SONET网络管理使用的是DS-3电路:它无法自我监视视频性能。因此,许多宽带运营商就安装了两个并行的网络:一个用于语音和数据的SONET网络, 另一个用于视频的专有数字系统。为了解决基本的传输问题,要安装SONET多路复用器。4.供电节点 几年前,有线电视运营商开始从事于一项全国范围内的计划,把系统升级为 “全业务”HFC网络。在那时,节点的大小根据固定用户数设置,最初可能是2000、1000或500个家庭。当然,节点的大小是受放大器级联限制的,这样可以确保产生的噪声和互调指标极限不超标。但在高密度区域内的节点经常遇到超过500个用户(一直到800个用户极限),但是在低密度区域的节点经常由于级联的限制大大少于500个用户。

一个提供干线电话业务的有线电视公司,利用分布式拓扑技术,采用传统的90V AC供电(PS),50%的负荷。对90V供电方案中,超过4000英里干线的分析表明,许多节点需要三个PS,并且平均每节点大约要达到2.5PS。对许多节点设计的更进一步的考察指出,供电必须加强,以便能承受住两个PS无法处理的负载量。对PS相对来说负载较轻(少于它名义上额定值的50%),明显处于低效状态。供电增加了系统操作和维护的麻烦,而且对网络可靠性有不良的影响。

一个更新的HFC升级结构可提高效率,并达到以下目标: •减少HFC网络系统升级的资本花费 •提高网络可靠性

•减少系统运作和维护的成本

•提高前向和反向的带宽,并提高模拟信号的质量

•通过减少升级系统的时间和花费来缩短打入市场的时间,并确保新的节点提供更高级的业务。

网络供电问题在节点大小策略的讨论中占有中心的地位。如果节点变的很小以至于它的功率负载不能够有效地消耗电能供应的容量,那么通过多个节点聚集功率,来获得比较经济实惠就变得非常值得。这便设计出一个功率分布系统(譬如 “功率馈线”电缆),它的安装是非常便宜的,但是对于减少传输电缆中的能量浪费却是足够有效的。

PDN定义了由PS支持的最大用户数量的节点大小。这正好与以前的设计形成对比,在后者中节点的大小或者是由覆盖范围内的家庭的固定数目定义的,或者由级联的放大器数量的限制定义的。

人们对更大型的节点有趣的观察:用于这些节点的总AC功率经常达到用于单个15amp PS的期望的75%的负载因数。这种情况发生在高密度区域内,在这些区域内,大量的家庭被少量的级联所覆盖,而且有线电话网络接口单元(NIU)的功率负载是与每英里的NIU的数量成比例的。

人们立即意识到PDN结构中的节点大小是极其重要的, 这对设计师提出新的挑战,把多大范围的区域隔开以便在不过载的前提下, 对节点进行供电。

与每节点具有500个家庭的传统设计相比。在PDN的设计上具有一定积极的影响,所有这些都在中密度和高密度的早期节点设计中被证实: •每英里干线上放大器的数量大约减少15%到20%左右,可以大大提高干线延伸的长度。

•节点的数量提高50%到75%,能提高低密度区域的比例 •备用能源供应的数量大约减少20%到30% •平均能源供应负载因子大约提高10%到15% •减少同轴电缆覆盖,从目前的15%到25%的范围减少到少于5% •提高光纤覆盖的用户数量,提高幅度少于5% PDN的设计者们很自信地认为,这样对于成本的减少将在中密度和高密度的区域变得非常普通。但是在低密度区域(每平方英里少于75个家庭)成本的减少将变得更加困难,因为需要更大的光纤覆盖的比例,以达到100-250个家庭的节点。但是现今的HFC-500结构中几乎没有低密度节点能够达到500个家庭,因为级联的限制。5.PDN结论

网络设计者正在把供电从最初的15安培输出容量到18安培,最终到21安培。因为骨干网络很可能安排电话和高速数据的传输,所以对网络升级必须做到 “热交换”的方式和完全无业务中断的方式。

PDN是一种较好的HFC解决方案,它能够很好地降低初装费、运作的成本以及提高网络性能和可靠性等方面的问题。这对中等密度和高密度区域系统的吸引力是非常大的。6.微型光纤节点

提供无限带宽的光纤,配置得离用户越近,则能提供越多的业务量和性能越灵活。DWDM技术促使扩大光纤的覆盖范围。例如,HFC网络中的光纤数量在过去的12年中不断增长,从光纤骨干网结构的5%到MFN结构的30%。

DWDM技术与数字信号处理(DSP)以及RF技术,在网络操作和业务方面提供了更大的灵活性。这种趋势将会继续下去,而且有线电视将会通过这些机会得到更大的益处。

PDN把光纤延伸致用户有源放大器的范围之内。微型光纤节点使得更深层次的光纤渗透,以及使网络中高级光子技术的开展应用成为可能。其目标是:

•建立起一个能经受住未来考验的网络 •继续简化操作并减少运营成本 •极大地提高网络可靠性 所有这些考虑都会导致工业界,对于HFC网络解决方案的持续不断的定义,和重新定义,目的是为了捕捉新技术解决方案、业务需求和可实施性(成本利益比)的不断变化的前景。

随着光纤的不断深入的延伸,关键的结构问题,就变成了如何利用HFC网络的同轴电缆的最后一英里。光纤延伸的结构使节点大小变为50个家庭,这与一个有500个家庭的节点相比,就能够使用户潜在地产生多出10倍的交互带宽,这是由于具有了使用小范围广播频谱的能力。AT&T宽带已经提出了这样一个网络的实现计划,并把它叫做LightWire结构。在这个结构中,同轴电缆段基本上所有的放大器都被去除了(除了那些在节点接收机内部的)。只有无源的同轴电缆才被用于向用户家庭传送信号。这种最终的同轴电缆也被用于电路交换或IP上的语音(VoIP)业务的家庭终端的网络电力供应。这种结构特性保持了对各种不同信号格式和协议对整个HFC网络的透明性,因此它完全支持目前业务的已有的操作。

工业界面临的另一项挑战,是在减少不断增加的成本的同时,为未来的业务扩展和增长提供灵活性。为了解决这个问题,在它们的地理位置的基础上,MFN与三条光纤以雏菊链的方式相连:一个携带下行流的广播信号,一个携带剩下的下行流小范围广播信号,一个携带上行流信号。这种拓扑技术实现了光纤总线(物理的)结构。它的好处是简化了处理并减少了相关成本,以及带来了未来扩展的灵活性(光纤总线以后可以扩展以覆盖更多的区域)。分析显示,这种结构的成本与传统的HFC网络的成本相同。

在物理总线的基础上,逻辑星型或总线操作都可以实现。譬如在使用反向传输的情况下,每个MFN能够进行循环功能以实现总线操作。另一方面,利用WDM技术,逻辑星型可以由不同波长携带的每个MFN来实现反向传输。7.结论

线性光波技术使得在HFC基础结构上的RF副载波链路得以实现。这种端到端的透明链路,为有线电缆提供了许多不同的业务传输机制和新的业务机会。本文中举例说明的PDN和MFN是HFC网络结构的两个高级的例子。

MFN的下一步甚至会更加令人兴奋。这种网络将使得HFC有线网络能够向用户提供接近对称的数字带宽,包括向住宅用户和商业用户提供交换10Mb/s和100Mb/s业务的能力。这种额外的带宽将通过减少有线电视系统上的模拟信号的数量来获得,为数字业务释放出更多的容量。这些数字业务将包括视频和数据。这些网络将显示出无源光网络(PON)的许多特性,但是成本却低得多。不但新的业务机会将成为现实,而且网络本身也将变得更加可靠。

为了达到端到端的可管理宽带业务的潜能,基础网络必须发展成能够支持几乎无处不在的高速对称带宽。有线HFC网络正处在提供这些能力的轨道之上。随着光电子技术的不断发展,HFC将能够提供最容易升级的高带宽网络。

第五篇:数字电视技术有线电视论文[范文模版]

1.有线电视网络中的数字电视技术

通过模拟信号技术发展而来的有线电视网络中的数字电视技术。是把之前的信号进行复制,随后输送到有线电视中。数字电视技术是把之前的信号分开,并且进行转变,这些被分开的信号再通过传输后,进行传播,随后当通过有线电视接收时,还把这些信号进行重新组合。这样就不会损坏有钱电视中之前的信号,有线电视上的数字电视技术使播放时的效果更加清楚,使电视中的画面更加真实。数字电视技术应用于有线电视网络中具有以下特点:第一,数字有线电视所传输出来的画面效果更加的清楚。数字电视信号是把之前的信号进行转变,不是简单的复制信号,对于原来的信号不会发生损坏,可以使有线电视的信号更加地完整性,可以使电视传输出来的画面不会出现失真现象,使画面更加地流畅。第二,信号进行传输时,所采用的是光纤传输。利用光纤传输信号信息不仅可以拓展数据信息的荷载量,可以使数字电视的有更多的频道进行选择,传输的电视内容可以多种多样。第三,基于互联网。互联网技术的先进性与现今数字电视的融合可以使有线电视网络多样化,可以使有线电视通过网络浏览视频、音频,还可以使有线电视利用视频通话,实现远程操作等相关功能。

2.有线电视网络中数字电视技术的应用

数字电视技术在我国的传媒业普遍采用,其中最关键的技术就是数字电视机顶盒。它主要的作用就是将数字电视技术与有线电视网络中心进行连接,其实即是一种可以起到转换作用的设备。数字电视信号通过电视机顶盒将模拟信号转变成数字电视信号,将各种图像以及声音通过压缩的方式置换成数字流,机顶盒还可以把这些数字流进行解码处理再还原成之前的模拟信号,随后再利用其它的音响设施以及显示器提供图像和声音给使用客户,这样自然而然就形成了广播电视节目。通过数字机顶盒可以将之前模拟有线电视信号技术置换成现代的数字有线电视信号技术。数字机顶盒是数字电视技术所产生的一种产物,机顶盒具有以下几种功能:第一,机顶盒可以向电视用户提供图像和声音,供客户使用。第二,数字电视技术是基于机顶盒服务的。第三,机顶盒可以提供一些广播数据信号,在进行传输信号的时候是利用电缆进行传输的,部分信号是通过同轴混合网传输的。此外,机顶盒可以在交互式多媒体中应用,用户可以选择很多种网络服务功能,比如说,软件更新,升级,接收邮件,上网,各种电台的点播等,数字电视技术在有线电视网络中的功能越来越多。数字电视技术不管在网络公司中还是广播电视台中都有着很深远的影响。我国目前在许多地域都采用了数字化电视技术和双向网络有线电视技术的改造工程,主要从三个方面可以体现出来:第一,客户端;第二,双向网络;第三,前一部分系统。用户通过数字电视技术可以看到多个地方的卫视台,以及中央卫视,所收到的信号十分的清晰化,接收信号时也更加地稳定、安全。数字信号电视技术还可以使一些个性化服务的用户满足自己的需求,自己喜欢的游戏、想看的电影、电视都可以进行点播,享受多种交互式点对点的娱乐和信息等服务

3.数字电视信号的有线电视网络传输

和之前的模拟信号传输所不同的是,数字电视技术在传输中所利用的是HFC方式,利用的是AM-VSB频分复用方式,利用了不一样的频率将各个节目进行区分,主要可以使之前的数字信号符合现在的HFC网络的标准要求,将传输信道进行编码处理,其中包括了码的流动量;R-S编码;卷积交织;字节到字符的映射;差分编码;基带成型滤波和QAM调制,相容与数字信号的传输过程中,各个信号之间的可以进行乱码的调解,利用分解把流码进行分开,可以有效预防各种信号之间的干扰。从高频载波形式上,MPEG-2与HFC在高频段进行网络传输时的模拟信号是相同的,采用混合传输,电缆传输、以及被光链路传输。数字电视技术方面SDL可以在调整的状态下进行传输,PDU,IP/IPX,ATM信元等都可以适用于复杂多变的歼敌数据传送过程,SDL不依靠SONET/SDH结构,在DWDM层的上面位置,兼容性能非常好。它使数据信号传送过程中更加的安全、可靠。SDL干扰频器所接收到的信号遭到损坏的可能性大大减少。它在数字电视信息中的传输过程中以其高质量的传输效果,占有非常重要的地位。

4.数字电视的环节组成4.1信源编码

它的主要功能作用是把图像以及声音转变成数字化,达到模拟信号转变数字信号的目的。

4.2复用

分复图像、视频以及各种数据合为一体的,以包为单位的数字信号源,再进行分割和区分,最后就组合而成了一套节目流或者多套节目流。

4.3信道编码与调制

信道适配其实就是信道编码。实现信道编码主要是依据各种数据流处理编码,为此达到减少错误。还可以将一些基带数据流存放于高频波段中,由此转变成频带信号。

4.4传输信道其中有HFC、卫星、数字干线、无线等。

4.5SDL技术

SDL在数字电视技术中的传输过程中不仅兼容性能比较好,而且在调整传送过程中,还可以有效克服复杂的数据,尤其是对PDU,IP/IPX。ATM信元等多数类型的效果非常明显。如果从本质上看待SDL技术,它是不受限于SONET/SDH结构的,通过自身就可以连接达到实现于DWDM层中,兼容性能非常好,可以保证数字信号在传输过程中更加地安全、可靠,与此同时还可以使数字电视中的数字流转化以及数据信息的安全性得以提升,主要是由于SDL干扰频器可以从很大程度中减少各种损坏。在进行数字信号的传输过程中SDL矩形高速流可以进行传输数据信息的叙述,SDL贞中的L1可以同步于传输中的各种性能,大大减少出错率。在进行传输过程中,一旦发生突发性事件可以有效被制止。

5.总结

新时期下数字电视技术是一种创新的电视传输技术,比之前的模拟电视技术多出了许多的传输信道的数据资源,使电视所接收到的传输画面更加清晰,数字电视技术可以利用数字机顶盒取得更多的数字电视节目。根据广电总局对数字电视未来的发展所提出的要求是:先进行布线,然后再通过卫星进行直播,然后再进行地面无线的“三步走”战略方针,我们未来2015年一年中,将完全由模拟信号过渡到数字信号。所以我们对数字信号电视技术还需要进一步的研究。

相关内容

热门阅读

最新更新

随机推荐