首页 > 文库大全 > 实用范文 > 其他范文

基础工程课程设计某住宅楼桩基础设计及计算书五篇范文

基础工程课程设计某住宅楼桩基础设计及计算书五篇范文



第一篇:基础工程课程设计某住宅楼桩基础设计及计算书

基础工程课程设计 ————某住宅楼桩基础设计 一:设计资料 1、建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.0m,地下水水质分析结果表明,本场地下水无腐蚀性。

建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: ,,H = 50kN;

柱的截面尺寸为:400×400mm;

承台底面埋深:D = 2.0m。

2、根据地质资料,以黄土粉质粘土为桩尖持力层,钢筋混凝土预制桩断面尺寸为300×300,桩长为10.0m 3、桩身资料:

混凝土为C30,轴心抗压强度设计值= 15MPa,弯曲强度设计值为 =16.5MPa,主筋采用:4Φ16,强度设计值:=310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为=15MPa,弯曲抗压强度设计值为=1.5MPa。、附:1):土层主要物理力学指标;

2):桩静载荷试验曲线。

附表一:

土层代号 名称 厚 度 m 含 水 量 w % 天 然 重 度 r KN/ 孔 隙 比 e MPa 塑性 指数 液性 指数 直剪 试验(快剪)压缩 模量(kPa)承载力标准值(kPa)内摩擦角° ψ° 粘聚力 C(kPa)1-2 杂填土 2.0 18.8 2-1 粉质粘土 9.0 38.2 18.9 1.02 0.34 19.8 1.0 21 12 4.6 120 2-2 粉质粘土 4.0 26.7 19.6 0.75 0.6 15 0.60 20 16 7.0 220 3 粉沙夹粉质粘土 >10 21.6 20.1 0.54 1.0 12 0.4 25 15 8.2 260 附表二:

二:设计要求:

1、单桩竖向承载力标准值和设计值的计算;

2、确定桩数和桩的平面布置图;

3、群桩中基桩的受力验算 4、承台结构设计及验算;

5、桩及承台的施工图设计:包括桩的平面布置图,桩身配筋图,承台配筋和必要的施工说明;

6、需要提交的报告:计算说明书和桩基础施工图。

三:桩基础设计(一):必要资料准备 1、建筑物的类型机规模:住宅楼 2、岩土工程勘察报告:见上页附表 3、环境及检测条件:地下水无腐蚀性,Q—S曲线见附表(二):外部荷载及桩型确定 1、柱传来荷载:V = 3200kN、M = 400kNm、H = 50kN 2、桩型确定:1)、由题意选桩为钢筋混凝土预制桩;

2)、构造尺寸:桩长L=10.0m,截面尺寸:300×300mm 3)、桩身:混凝土强度 C30、=15MPa、=16.5MPa 4φ16 =310MPa 4)、承台材料:混凝土强度C30、=15MPa、=16.5MPa =1.5MPa(三):单桩承载力确定 1、单桩竖向承载力的确定:

1)、根据桩身材料强度(=1.0按0.25折减,配筋 φ16)2)、根据地基基础规范公式计算:

1°、桩尖土端承载力计算:

粉质粘土,=0.60,入土深度为12.0m 2°、桩侧土摩擦力:

粉质粘土层1:,取18kPa 粉质粘土层2:

,取28kPa 3)、根据静载荷试验数据计算:

根据静载荷单桩承载力试验曲线,按明显拐点法得单桩极限承载力 单桩承载力标准值:

根据以上各种条件下的计算结果,取单桩竖向承载力标准值 单桩竖向承载力设计值 4)、确桩数和桩的布置:

1°、初步假定承台的尺寸为 上部结构传来垂直荷载:

承台和土自重:

取 根 桩距 :

取 2°、承台平面尺寸及柱排列如下图:

(四):单桩受力验算:

1、单桩所受平均力:

2、单桩所受最大及最小力:

3、单桩水平承载力计算:

,即 与合力 与的夹角小于 单桩水平承载力满足要求,不需要进一步的验算。

(五):群桩承载力验算:

1、根据实体基础法进行验算:

1)、实体基础底面尺寸计算:

桩所穿过的土层的摩擦角:

,取,边桩外围之间的尺寸为:

实体基础底面宽:

实体基础底面长:

2)、桩尖土承载力设计值:

1° 实体基础埋深范围内的土的平均重度(地下水位下取有效重度)2° 实体基础底面粉质粘土修正后的承载力特征值为:

根据书上表2-5 取,3°取,基础自重为:

4°实体基础底面压力计算:

当仅有轴力作用时:

考虑轴力和弯矩时计算:

由以上验算,单桩及整体承载力满足要求。

(六)、承台设计:

承台尺寸由图1所示,无垫层,钢筋保护层厚取100mm。

1、单桩净反力的计算:

单桩净反力,即不考虑承台及覆土重量时桩所受的力 1)、单桩净反力的最大值:

2)、平均单桩净反力:

2、承台冲切验算:

1)、柱边冲切:

冲切力:

受冲切承载力截面高度影响系数的计算:

冲夸比与系数的计算:

3、角桩向上冲切:

4、承台抗剪验算:

斜截面受剪承载力可按下面公式计算:

,Ⅰ-Ⅰ截面处承台抗剪验算:

边上一排桩净反力最大值,按3根桩进行计算。

剪力 承台抗剪时的截面尺寸近似的定为:平均宽度 , Ⅱ-Ⅱ截面处承台抗剪验算:

边排桩单桩净反力平均值,按4根桩计算。

剪切力 承台抗剪时的截面尺寸:平均宽度,斜截面上受压区混凝土的抗剪强度为:

5、承台弯矩计算及配筋计算:

1)、承台弯矩计算:

多桩承台的弯矩可在长,宽两个方向分别按单向受弯计算:

Ⅰ-Ⅰ截面,按3根桩计算:

Ⅱ-Ⅱ截面,按4根桩计算:

2)、承台配筋计算:取。

长向配筋:

选配 短向配筋:

选配 承台配筋图:

(七)、桩的强度验算 桩的截面尺寸为,桩长为,配筋为,为通长配筋,钢筋保护层厚度选。

因桩的长度不大,桩吊运及吊立时的吊点位置宜采用同一位置,如下图所示,控制 弯矩为吊立时的情况:

,取动力系数为,则 由钢筋混凝土结构设计规范得 选用,桩的配筋构造见图纸。(图纸另附)图纸附件无 仅供参考

第二篇:基础工程课程设计计算书

基础工程课程设计计算书(参考)

注:请注意自重(2000+学号后4位)与桩径(1.5m)的变化,由于签名荷载组合发生变化,所以从头到尾过程自能参考,结果不能复制一旦发现复制,按不及格处理!

一、恒载计算(每根桩反力计算)

1、上部结构横载反力N1 11N1G23501175kN

222、盖梁自重反力N2 11N2G2350175kN22

3、系梁自重反力N3 1N3(0.71)(11)3.32529kN

24、一根墩柱自重反力N4 低水位:N4251248.325101245.1223.85kN

常水位:N4251244.825101248.6196.91kN

5、桩每延米重N5(考虑浮力)

N525101.224116.96kN

二、活载反力计算

1、活载纵向布置时支座最大反力

⑴、公路II级:qk7.875kN/m,pk193.5kN Ⅰ、单孔布载

R1290.7 k6NⅢ、双孔布载

R2581.5 k2N⑵、人群荷载

Ⅰ、单孔布载

R1=42.7kN

Ⅲ、双孔布载

R2=85.4kN

2、柱反力横向分布系数的计算 柱反力横向分布影响线见图5。

0.570.51

图5 图5⑴、公路II级

双孔布载汽 车道:0.3 车辆:0.3

汽=1.1670.7670.4180.0781.25

⑵、人群荷载 人 12人=1.33

三、荷载组合

1、计算墩柱顶最大垂直反力R 组合Ⅰ:R= 恒载 +(1+u)汽汽车+ 人人群(汽车、人群双孔布载)

R1175175(10.3)1.25581.5211.333.524.42408.55kN

2、计算桩顶最大弯矩

⑴、计算桩顶最大弯矩时柱顶竖向力

组合Ⅰ:R= N1+N2+(1+u)汽

Piyi+ 人

1ql(汽车、人群单孔布载)21R11751751.31.25290.7611.333.524.41879.28kN

2⑵、计算桩顶(最大冲刷线处)的竖向力N0、水平力Q0和弯矩M0

N0= Rmax+N3+ N4(常水位)2408.5529196.912631.71kN Q0= H1+ W1+ W222.581040.5kN M0= 14.7H1+ 14.05W1+ 11.25W2+ 0.3Rmax活

=14.722.514.05811.25100.32408.551175175873.22kNm

Rmax活——组合Ⅰ中活载产生的竖向力的较大者。

四、钻孔灌注桩单桩承载力及强度计算

1、单桩承载力计算(此处请参照书上格式)桩长计算:

设最大冲刷线以下桩长为h,一般冲刷线以下桩长为h3,单桩最大竖向力为: V=N1+N2+N3+N4(低水位)+N活+

1qh 2N活——计算柱顶最大垂直反力时活载产生的较大值 q ——桩的集度(考虑浮力)

1V117517529223.85(2408.551175175)16.96h2658.658.48h 单桩容许承载力:

1[P]Uliim0A[0]K2z(h33)

2li——各层土的厚度,i——各层土的极限抗剪强度,K2——查表2-

5、,U——桩周长,A——桩底面积 z——土的容重(多层土时取加权平均值)——查表3-9,m0——表3-10,[0]——查表2-3 取l1=10.9m,l2=h-10.9m, 1=45, 2=80,K2=2.5, z18.510.919.5(h10.9),h设计桩径1.2m,考虑冲抓锥成孔直径1.3m,桩周长U1.34.08m,Ad441.13m2,0427kPa,取0.7(由

h4~20得), m0=0.7(由dt0.2~0.4d0.2~0.4得)。dd1NhUliim0A[0]K2z(h33)

2118.510.919.5(h10.9)4.0810.945h10.9800.70.71.134272.5(h3.63)2h令最大竖向力与单桩容许承载力相等,即VNh解得h=17.6m,取h=18m。

Ilwwpwlwp

Il——液性指数

w——天然含水量 wl——液限

wp——塑限

软塑:Ilwwpwlwpwwpwlwp21%16.3%0.734

22.7%16.3%17.8%16.3%0.234

22.7%16.3%硬塑:Ile0G(1w)

e0——天然孔隙比

G——土粒比重

——容重

软塑:e0G(1w)G(1w)2.70121%0.177

18.5硬塑:e02.70117.8%0.163

19.5h3h3.6=18.1+3.6=21.7m取22m

2、钻孔桩强度复合(此处按书上新规范)⑴、确定桩的计算宽度b1和变形系数

b1kfk0kd kf及k0——查表4-

3k=1(桩间影响系数)d——桩径 查表得kf0.9,k011 d11b1kfk0kd0.91d0.911.21.98

d1.2

5mb

1m——查表4-1 EI=0.67EhIh EI4查表得m10MN/m

1.246EI0.67EhIh0.672.85101.9436342610

6475mb15100001.980.40 EI1.94362426106⑵、最大冲刷线以下深度z处桩截面上的弯矩Mz计算

MzQ0AmM0Bm

hh=0.418=7.2,根据zz,所以按弹性桩考虑(其中h4时按4考虑),查附表

3、附表7得Am、Bm,按上式计算不同深度zz处的Mz并按比例绘出桩身弯矩图,求出最大弯矩所在位置zmax、最大弯矩值Mmax及相应轴力N(计算轴力N时桩自重考虑浮力并按一半考虑,同时应减去摩阻力)。

z0时,Am0,Bm1.0 40.5Mz0873.221873.22kNm0.40z1时,Am0.37739,Bm0.98617 40.5Mz0.37739873.220.98617899.35kNm0.40z2时,Am0.64561,Bm0.91324 40.5Mz0.64561873.220.91324862.83kNm0.40z3时,Am0.76183,Bm0.77415Mz 40.50.76183873.220.77415753.14kNm0.40 z4时,Am0.73734,Bm0.59373 40.5Mz0.73734873.220.59373593.11kNm0.40z5时,Am0.61413,Bm0.40658Mz 40.50.61413873.220.40658417.21kNm0.40z6时,Am0.44334,Bm0.24262 40.5Mz0.44334873.220.24262256.75kNm0.40z7时,Am0.26996,Bm0.11979Mz 40.50.26996873.220.11979131.94kNm0.40z8时,Am0.19305,Bm0.07595 40.5Mz0.19305873.220.0759585.87kNm0.40z9时,Am0.0.05081,Bm0.01354 40.5Mz0.05081873.220.0135416.97kNm0.40z10时,Am0.00005,Bm0.00009Mz 40.50.00005873.220.000090.08kNm0.40⑶、计算纵向力Nj、计算弯矩Mj的确定 计算纵向力Nj:

11SGN1N2N3N4(常水位)qzmaxUzmaxi22

11117517529196.9116.9614.081451489.84kN22N汽1u汽Pyii10.31.25581.52944.97kN

11N人人ql1.333.524.456.79kN

221N汽N人944.9755.791001.76kN SQ11.21489.841.41001.763190.27kN Nj1.2SG1.4SQ

当汽车荷载效应占总荷载效应50%及以上时,SG、SQ1的系数不再得高,否则应按规定提高,见规范P134。计算弯矩Mj:

11.3SQ2 Mj1.1SG1.3SQSQ2——制动力、盖梁风力、墩柱风力产生的弯矩。恒载弯矩SG为零。

SG0.31175176.25kNm 2S'Q1290.760.342.70.3100.34kNm SQ214.722.514.05811.2510555.65kNm11.3SQ21.1176.251.3100.341.3555.651046.66kNmMj1.1SG1.3SQ相对偏心矩:e0

MjNj1046.660.33

3190.27⑷、桩的计算长度lp的确定

44hah

4故有:lp0.7(l0)0.713.416.38m

0.40l0——局部冲刷线至墩柱顶的距离

⑸、偏心矩增大系数值的计算(此处按新规范公式计算)

11cNjlp210eEhIhb

cs1.2

5砼、钢筋材料安全系数

b0.9

5构件工作条件系数(偏心受压取0.95)

11cNjlp210eEhIhb11.14 21.253190.2716.3811.247100.322.85100.9564 其中,e0.10.10.1430.1430.32 e00.330.30.31.2de01.140.330.38 故:e0⑹、桩截面强度复核(此处按新规范公式、数据计算,请参考结构设计原理)设a7.0cm(砼保护层厚度)

rgra60753cm,g25 # 砼: Ra14.5MPa Ⅰ级钢筋:Rg240MPa

rgr530.883(取0.9),r——桩半径 60桩截面按0.2%含筋率配置钢筋,取定钢筋数量后计算实际采用的配筋率。

As0.2%d240.2%1.132.26103m22260mm2

取1216,As2413mm2,0.21%

强度复核:

按下列公式采用试算法进行计算

BRaDgRg

e0r

ARaCRg假定值,查附表3.1得A、B、C、D值,代入上式计算e0值。如计算的e0值与已知的e0值相等或接近,则相应的A、B、C、D值即为计算采用值,否则应重新假定值,查表得A、B、C、D值,再计算e0值,直至满足要求为止。

用满足要求的A、B、C、D值进行承载力Nj和Mj的计算

Njb2ArRabCr2Rg csMjb3BrRabDgr3Rg cs

当计算的承载力Nj、Mj分别大于计算纵向力Nj和计算弯矩Mj时,强度得到满足,否则应重新进行截面或配筋设计。

设0.46,A1.0490,B0.5982,C0.1903,D1.9081,e'0BRaDgRgARaCRgr0.598214.51.90810.21%0.92400.60.3787m

1.049014.5(0.1903)0.21%240接近e'00.38 Njb2ArRabCr2Rg cs0.950.951.04900.6214.5103(0.1903)0.21%0.62240103 1.251.254135.35kN3190.27kN满足要求。

Mjb3BrRabDgr3Rg cs0.950.950.59820.6214.51031.90810.21%0.90.62240103 1.251.251565.99kN1046.66kN满足要求。

后面请各位自行完成截面应力复核和位移计算,考虑箍筋和螺旋筋的布置!!请各位按规范要求进行配筋!!

(未完)

第三篇:基础工程课程设计计算书

1.确定桩长: 根据地质材料,以第四层粉质粘土为桩尖持力层。桩长l=20m 桩截面的边长(截面为正方形)

c=2000/50=400mm 2.单桩竖向承载力极限标准值和特征值:

QukQQqskpksiklqAipkp40.4243141523216000.40.4809.6KN

809.6404.8KN

uk23.桩数,承台尺寸及桩的平面布置图: Ra1VRkaKQn>8.0 暂取9根

桩距:按规范表3.3.3—1 可得 桩距 S=4.5c=1800mm d取400mm 承台的边长

a=b=2S+2d=21.820.44.4m

取承台的高度h为1m,桩顶伸入承台50mm,钢筋的保护层取70mm h0=1000-70=930mm 4.群桩中基桩的受力验算: 竖向承载力特征值:

ASdcnA4.44.490.40.4A1.99= =psn9m

2a=4.5 Blakc0.22 根据 表5.2.5得 c0.2

RRafA=404.80.2751.99434.65KN

c3 取平台及其上土的平均重度: G=20KN/m

3200204.44.41.0209.84.44.40.5 Nk n9409.55KNR434.65KNkk GV

NkminkmaxM=NkHhxmaxx2=409.55i(400501)1.8451.21KN1.2R367.87kN0

61.81.8 单桩的水平力:

假设桩的混凝土强度等级为C30 HHkn=50/9=5.56KN Ec30000MPa Es=200000MPa bo=1.50.40.51.1m eEEb6sc=6.67 取=0.65% x0a10mm EI=0.85EcIo 查表5.7.5可得

gm=4.5MN/m 4W0b2-1b=06.4b26.6710.65%1.10.0166 2222eg0I0Wb0020.00914

=

5mb0EI=0.463 h=9.26m>4.0 查表5.7.2 可得x2.441

3Rha0.75*3EIxx0a=0.750.463EEs1s20.85300000.009140.0171.08KNHk

2.441软弱下卧层强度验算: Es15.2

Es22.4

2.25

z0.5

b查表可得 =18.875度

Gk=204.44.41209.84.44.40.5485.94KN

kk00sikiFG1.5ABql2ttan2ttanABz00=3200485.941.544243141523216.18KN0 422tan18.875422tan18.87519.59.8416.59.81518.39.837.49 m22由于软弱层是淤泥质粉质粘土,所以查表可得 d1.6

fazmfakdd0.5751.67.49220.5332.66KN

mZ7.4922164.78KN

 zZ164.780164.78KNmfaz332.66KN

符合承载力的要求。5.承台结构计算: F=1.35Vk1.3532004320KN M=1.35Mk1.35400540KNm

H=1.35H1.355067.5KN N=F/n=4320/9=480KN NmaxNMHhxmax=480(54067.51)1.8minx2i61.81.8=536.25KN423.75KN

a)承台受冲切承载力验算: FlF-Ni4320-480=3840KN a0x0xh=1.40.931.511.0 取1.0 0 0.84ox0x0.20.841.20.7 a0y0yh=1.51>1.0 取1.0 0oy0.842=0.7 0y0.10.9hp120008002000.9833

20Xbca0y0yhca0xhpfth020.70.41.40.70.41.40.983311000.935069.81KNF1 b)角桩向上冲切: c1c20.6m a1x=a0x 1x0x a1y=a0y 1y0y

0.561y0.2=0.467 1x1y0.467 1y1xca1y221yca1x12hpfth00.4670.60.720.4670.60.720.983311000.93 892.54KNNmax543.28KNc)承台受剪承载力计算:

对于I—I Vf8000.25hstb0h0 hs

==0.963

930x0x=1.51 1.751=0.697 hsftb0h0=0.9630.69711004.40.933021.25KN3Nmax1629.84KN=

对于—

y0y=1.51 1.75=0.697 1hsftb0h0=3021.25KN>3N=1440KN d)承台受弯承载力计算:

MxNiy34801.62304KNm

iAs M0.9fhxy=023041060.93009309175.6mm

22选用直径为22mm,根数为25根。As=9503mm,沿平行y轴方向均匀布置。

MsyNixi3543.281.62607.74KNm

yMA0.9fhy=02607.741060.930093010385.26mm 选用直径为22mm,根数为28根。As=10644mm,沿平行x轴方向均匀布置

第四篇:基础工程课程设计

独立基础课程设计

一、设计资料

10号A轴柱底荷载: ①柱底荷载效应标准组合值:

FK1598KN,MK365KNm,Vk120KN;② 柱底荷载效应基本组合值:

F2078KN,M455KNm,V156KN。持力层选用 ③ 号粘土层,承载力特征值

fak180KPa,框架柱截面尺寸500mm500mm,室外地坪标高同自然地面,室内外高差450mm。

二、独立基础设计

1、选用基础材料:C30混凝土,HRB335钢筋,预计基础高度0.8m。

2、基础埋深选择:根据任务书要求和工程地质资料,第一层土:杂填土,厚0.5m,含部分建筑垃圾;

第二层土:粉质粘土,厚1.2m,软塑,潮湿,承载力特征值

第三层土:粘土,厚1.5m,可塑,稍湿,承载力特征值

第四层土:全风化砂质泥岩,厚2.7m,承载力特征值

地下水对混凝土无侵蚀性,地下水位于地表下1.5m。

取基础底面高时最好取至持力层下0.5m,本设计取第三层土为持力层,所以考虑

取室外地坪到基础底面为0.5+1.2+0.5=2.2m。由此得基础剖面示意图如下:

ffak130KPa;180KPa;

akfak240KPa;

3、求地基承载力特征值

fa

根据粘土e=0.58,IL0.78,查表2.6得b0.3,d1.6

基础以上土的加权平均重度 m180.5201100.29.40.516.23KN/3

m2.2 持力层承载力特征值

fa(先不考虑对基础宽度修正)

fafakd(d0.5)1801.616.23(2.20.5)224.15KPa

m(上式d按室外地面算起)

4、初步选择基础尺寸

取柱底荷载标准值:Fk1598KN,MK365KNm,Vk120KN

计算基础和回填土重Gk时的基础埋深d(2.22.65)2.425m

基础底面积:

12A0fdaGFk159828.75m

224.150.7101.72520

由于偏心不大,基础面积按20%增大,即:

A1.2A01.28.7510.08m2

2初步选定基础底面面积Alb3.82.810.64m,且b=2.1m<3m不需再对fa进行修正。

5、验算持力层地基承载力

回填土和基础重:

GkGdA(0.7101.72520)10.64441.56KN

偏心距: ek0.8kFM3651200.226m0,满足要求。

基地最大压力:

P6ekkFkGkmaxA(110.6456l)1598441.(1630..8216)

260.1KPa1.2fa(268.98KPa)

所以,最后确定基础地面面积长3.8m。宽2.8m。

6、计算基底净反力

取柱底荷

合设

值F2078KN,M455KNm,V165KN.净偏心距

e4551560.n,0MN207880.28m

基础边缘处的最大和最小净反力 :

Pn,maxF16en,02078n,minlb(l)(160.28)281.64KPa3.82.83.8108.96KPa

7、基础高度

柱边基础截面抗冲切验算(见图2)

l3.8m,b2.8m,atbc0.5m,ac0.5m.初步选定基础高度h800mm,分两个台阶,每阶高度均为400mm的。h0800(4010)750mm(有垫层)。

aa2h0.520.752m

bt0batamab250020001250mm

2因偏心受压,Pn取Pn,max281.64KPa

冲切力:

因 b2.8mbc2h00.520.752m(即:冲切在地面范围内)

bbac[()b]()hFPh0222222.10.53.80.50.75)]

281.64[(220.75)2.8(22lcln,max02664.67KN抗冲切力:

0.7hpftamh00.71.01.431031.250.75938.44KN664.67KN,满足要求!

8、变阶处抗冲切验算

b1.5m,a2.0m,h40050350mma

aa2h1.520.352.2mb2.8mt1101bt0取ab=2.2m

ama1.52.2a1.85m t2b冲切力:

Flla1b[()b(1h01)]Pn,max22h01222b2 281.64[(3.820.35)2.82.80.5(0.35)] 2222408.38KN抗冲切力:

0.7hpftamh010.71.01.431031.850.35648.15KN408.38KN

满足要求。

9、配筋计算

选用HRB335级钢筋,(1)

基础长边方向

1—1截面(柱边)

柱边净反力:

fy300Nmm

2lac(pPn,IPnmin2lPn,min)n,max3.80.5108.96(281.64108.96)

23.8206.66KPa悬臂部分净反力平均值:

1(1(281.64206.66)244.15KPa )2Pn,maxpn,I弯矩:

221Pn,maxPn,I(l)(2b)1244.15(3.80.5)(22.80.5)bc24ac MI24 2675.78KNm6675.782M10I3337.2mm AS,10.9f0.9300750yh0

III—III截面(变阶处)

la1(Pn,maxPn,min)Pn,Ⅲ2l3.82.0(281.64108.96)

108.9623.8240.74KPaPn,min

21Pn,maxPn,Ⅲ(la1)(2b)b1MⅢ24221281.64240.74(3.82.0)(22.81.5)242250.35KNm250.35102MⅢ

2649mmAS,Ⅲ0.9fyh010.9300350比较AsⅠ 和As,Ⅲ,应AsⅠ按配筋

,实际配 16@180 ,则钢筋根数:

62800402n117,180

As201.1173418.7mm2(2)基础短边方向

因为该基础受单向偏心荷载作用,所以,在基础短边方向的基底反力可 按均布分布计算,取

11Pn(pn,maxpn,min)(281.64108.85)261.19KPa

22弯矩: II-II截面:

21Pn,maxPn,min(bbc)(2lac)M24221261.19(2.80.5)(23.80.5)

24466.32KNm466.32106MI2303mm2 AS,0.9fyh00.9300750IV-IV截面(变阶处)MV1Pn,maxPn,min2bb1)(2la1)(24221281.64108.96(2.81.5)(23.82)242176.5KNmAS,IV176.5102MⅢ1868mm

0.9fyh010.93003506比较AS,II 和AS,IV,应AS,II按配筋

,实际配 22 12@180 则钢筋根数:

3800402n12218010、基础详图配筋大样图:

见施工图

三、B、C两轴计算

2113.1222488.2mmAs1、由任务书得:10号B轴柱子基底荷载为 :

B轴:Fk2205KN,Mk309KNm,Vk117KN;

试取

A'0lb43.614.4m

持力层承载力特征值:

ff(b3)(d0.5)aakbdm

1800.39.4(3.63)1.616.23(2.20.5)

225.84KPa

基础底面积:

22052 11.96mA0faGd225.840.7101.72520Fk

基础面积按20%增大,即:

A1.2A01.211.9614.35m2

2初步选定基础底面面积Alb43.614.4m

2、验算持力层地基承载力

回填土和基础重:

GkGdA(0.7101.72520)14.4597.6KN

3091170.8lMk

偏心距: ek0.145m0.8m

597.66FkGk220P>0,满足要求。

kmin

基地最大压力:

Al14.44.8229.9KPa1.2fa1.2224.15268.98KPaPkmaxG6e2205597.660.145F(1)(1)kkk

所以,最后确定基础地面面积长4m;宽3.6m。

3、计算基底净反力

取柱底荷载效应 基本组合设计值:

F2866KN,M402KNm,V153KN.净偏心距 : en,0M4021530.80.183m N2866 基础边缘处的最大和最小净反力 :

Pn,maxn,minF16en,0286660.183244.56KPa ()(1)153.50KPalbl4.03.64.84、基础高度

柱边基础截面抗冲切验算(见图3)

l4.0m,b3.6m,atbc0.5m,ac0.5m.初步选定基础高度h800mm,分两个台阶,每阶高度均为400mm的。h0800(4010)750mm(有垫层)。

aa2hbt00.520.752mb3.6m

取ab2m

atamnab250020001250mm

2P取Pn,max244.56KPa

冲切力:

因 b2.8mbc2h00.520.752m(即:冲切在地面范围内)

FlblatPn,max[(h0)b(bch0)]2222223.60.534.00.5244.56[(0.75)3.6(0.75)]2222723.90KN抗冲切力:

0.7hp ftamh00.71.01.43101.250.75938.44KN732.90KN39

满足要求!

5、变阶处抗冲切验算

atb11.5m,a12.0m,h0140050350mm

abat2h011.520.352.2mb3.6m

取ab=2.2m

ama1.52.2a1.85m t2b冲切力:

Flbb1la1Pn,max[(h01)b(h01)]2222223.60.54.02281.64[(0.35)3.6(0.35)]2222452.44KN抗冲切力:

0.7hpftamh010.71.01.43101.850.35648.15KN452.44KN3满足要求。

6、由任务书得:10号C 轴柱子基底荷载为 :

C轴:Fk1727KN,Mk428KNm,Vk114KN;

试取

A'0lb43.614.4m 由A轴计算得持力层承载力特征值:

2f224.15KPa a12计算基础和回填土重Gk时的基础埋深d(2.22.65)2.425m 基础底面积:

17272 9.46mA0faGd224.150.7101.72520Fk

由于偏心不大,基础面积按20%增大,即:

A1.2A01.29.4611.35m2 初步选定基础底面面积Alb3.8311.4m,且b=3m不需再对进行修正。

7、验算持力层地基承载力

回填土和基础重:

faGkGdA(0.7101.72520)11.4473.1KN

4281140.8lMk

偏心距: ek0.236m0.633m

6FkGk1727473.10

P>0,满足要求。

kmin

基地最大压力:

Al11.43.8264.91KPa1.2fa1.2224.15268.98KPaPkmaxG6e1727473.1060.236F(1)(1)kkk

所以,最后确定基础地面面积长3.8m;宽3.0m。

8、计算基底净反力

取柱底荷载效应 基本组合设计值:

F2245KN,M557KNm,V149KN.净偏心距 : en,0M5571490.80.301m N2245 基础边缘处的最大和最小净反力 :

Pn,maxn,minF16en,0224560.301290.52KPa ()(1)103.34KPalbl3.83.03.89、基础高度

柱边基础截面抗冲切验算(见图3)

l3.8m,b3.0m,atbc0.5m,ac0.5m.初步选定基础高度h800mm,分两个台阶,每阶高度均为。h800(4010)750mm(有垫层)0400mm的。

aa2hbt00.520.752mb3.0m

取ab2m

atamnab250020001250mm

2P取Pn,max290.52KPa

冲切力:

因 b3.0mbc2h00.520.752m(即:冲切在地面范围内)

FlblatbPn,max[(h0)b(ch0)]2222223.00.53.80.5290.52[(0.75)3.0(0.75)]2222711.77KN抗冲切力:

0.7hpftamh00.71.01.431031.250.75938.44KN711.77KN满足要求!

10、变阶处抗冲切验算

atb11.5m,a12.0m,h0140050350mm

abat2h011.520.352.2mb3.0m

取ab=2.2m

atamab21.52.21.85m

冲切力:

FlPn,max[(bla1h01)b(b1h01)]222222290.52[(3.00.53.820.35)3.0(0.35)]2222432.87KN抗冲切力:

0.7hpftamh010.71.01.43101.850.35648.15KN432.87KN3 满足要求。

根据以上计算,可以绘制出基础平面布置图和A轴柱子基础大样图。见基础平面布置图。

第五篇:基础工程课程设计-

基础工程灌注桩课程设计

本工程是办公大楼,上部结构采用框架结构体系,基础拟采用桩基础。根据工程场地《岩土工程勘察报告》,地基土层依次为素填土、粉质粘土、淤泥质填土、粉土,均在地下水位以上。地下有四种土层,考虑地质特征、荷载加载情况及柱网尺寸较大,土层分布不均匀,混凝土预制桩的预制长度较难掌握,故可以选择灌注桩基础为基础形式。根据《建筑桩基技术规范》(JGJ94-2008),选用内夯沉管灌注桩,单打法施工,与一般钻孔灌注桩比,沉管灌注桩避免了一般钻孔灌注桩桩尖浮土造成的桩身下沉,持力不足的问题,同时也有效改善了桩身表面浮浆现象。另外,这种桩的施工设备简单,沉桩进度快,成本低,该工艺

也更 节省材料,用钢量较省。1.1 设计题目

本次课程设计的题目:灌注桩基设计。

一、1.2设计荷载(○C○3桩)

柱底荷载效应基本组合值如下。

F4681.4kN,Mx72.8kNm,Vx-0.2kN,My0.2kNm,Vy138.3kN

柱底荷载效应标准组合值如下。

Fk3467.7KN,Mxk53.9kNm,Vxk-0.15kN,Myk0.15kNm,Vyk102.4kN1.3底层条件及其参数

底层条件及其参数详见桩基任务书。1.4灌注桩基设计

根据工程场地的《岩土工程勘察报告》,建筑物基础设计方案采用混凝土沉管灌注桩,结合各土层物理力学性质和具体工程地质条件,具体设计方案如下:室外地坪标高为-0.30m,自然地面标高同室外地坪标高。因该建筑桩基属丙级建筑桩基,拟采用直径为600mm的圆形混凝土沉管灌注桩。选择④号的粉土层作为桩基础的持力层。桩端伸入持力层2.15m(3d~10d=1800~6000mm),设计桩长为13.0m,预制桩尖长0.5m。初步设计承台高1.0m,承台地面埋置深度-1.70m,桩顶伸入承台50mm。1.4.1单桩承载力计算 根据以上设计,桩顶标高为-1.65m,桩底标高为-14.65m,桩长为13m。1.单桩竖向极限承载力特征值计算

114003.140.63.140.60.3112268.5112.1533809.6kN42RaqpaApupqsiali2.桩数确定

根据上部荷载初步估计桩数为

n则设计桩数为5根。1.4.2桩基的验算

Fk3467.74.3 Ra809.6

根据《建筑桩基技术规范》(JGJ94-2008),当按单桩承载力特征值进行计算时,荷载应取其效应的标准组合值。由于桩基所处场地的抗震设防烈度为7度,且场地内无可液化砂土、粉土问题,因此可不进行地震效应的竖向承载力验算。

根据桩数设计矩形承台,边长为3.8m3.8m,边桩的中心距为2.6m,桩心至承台边缘为600mm(见图1)。

承台及其上填土的总重为

Gk3.83.81.720490.96kN

计算时取荷载的标准组合,则

FkGk3467.7490.96791.732kNRa823.3kN,n5Qkmax53.9-0.1511.30.15102.411.3MxymaxMyxmaxQ791.732kQkmin41.3241.32yi2xi2821.8kN1.2Ra1.2823.3987.96kN761.7kN0Qk满足设计要求,可知此初步设计是合理的。1.4.3承台设计

根据以上桩基设计及构造要求,承台尺寸为3.8m3.8m,初步设计承台厚1.0m(见图2),承台混凝土选用C30,ft1.43N/mm2,fc14.3N/mm2。承台钢筋选用HRB335级,fy300N/mm2。1.承台内力计算——采用荷载效应基本组合值

承台内力计算采用荷载效应基本组合值,基桩净反力设计值为

NmaxFMxXiMyYi4681.472.8-0.211.30.2138.311.3976.87kN2222Nminnxiyi541.341.3895.69kN

NF4681.4936.28kN。n5 2.承台厚度及受冲切承载力验算

为防止承台产生冲切破坏,承台应具有一定的厚度,初步设计承台厚1.0m,承台保护层厚40mm,则ho100040960mm。分别对柱边冲切和角桩冲切进行计算,以验算承台厚度的合理性。

由于桩基为圆形桩,计算时应将截面换算为方桩,则换算方桩截面边宽为

bp0.8d0.8600480mm

图2所示承台计算简图中的基桩是换算后边长为480mm的方桩。(1).柱对承台冲切

承台受桩冲切的承载力应满足下式:

Fl2oxbcaoyoyhcaoxhpftho

由于FlFNi4681.4936.283745.12kN,则冲跨比为

oxaox8600.895 8(在0.25~1.0之间)ho960

oy冲切系数为

oxaoyho8600.89589600.840.840.766

ox0.20.89580.oy0.840.840.766

oy0.20.89580.2h800,hp1.0;h2000,hp0.9 内插可得

hp1.0-1.0-0.9(100-0800)0.98

4200-08002oxbcaoyoyhcaoxhpftho5215.1kNFl3745.12kN

20.7660.40.860.7660.40.860.98414300.96 故厚度为1.0m的承台能够满足柱对承台的冲切要求。(2).角桩冲切验算

承台受角桩冲切的承载力应满足下式:

a1ya1x

Nl1xc221yc12hpftho

'由于NiNmax976.87kN,从角桩内边缘至承台外边缘距离为

c1c20.84m,a1xa1y0.86m,1x1ya1x0.86,0.895(在80.25~1.0之间)

ho0.960.560.560.511,1x0.20.89580.2

1x1ya1ya1xcc1x21y12hpftho20.98414300.9(0.840.86/2)0.511(0.840.86/2)

0.5111698.5kNNmax976.87kN故厚度为1.0m的承台能满足角桩对承台的冲切要求。

3.承台受剪承载力计算 剪跨比与以上冲垮比相同。

承台剪切破坏发生在柱边与桩便连线所形成的斜截面处,对于I-I截面,oxoy剪切系数为

1.751.01.750.923

0.89581.08600.8958(介于0.3~3之间)960受剪切承载力高度影响系数为

hs(800/ho)I-I截面剪力为

V2Nmax2976.871953.74kN 则

0.25(800/960)0.250.955

hsftbho0.9550.9233.814300.964598.3kN2Nmax2976.871953.74kN故承台能满足抗剪切的要求。

4.承台受弯承载力计算

'对于I-I截面,取基桩净反力最大值Nmax976.87kN进行计算,则

MxNiyi2976.87(1.3-0.2)2149.1kNm,Mx2149.1106

As8291mm.32

0.9fyho0.9300960因此,承台长边方向选用B22@180,钢筋数n=3800/180+1=23,实际配筋As23380.1

8742.3mm2,满足要求。沿平行y轴方向均匀布置。

'对于Ⅱ—Ⅱ截面,取基桩净反力最大值Nmax976.87kN进行计算,则

MyNixi2976.87(1.3-0.2)2149.1kNm,2149.1106

As8291mm.32

0.9fyho0.9300960因此,承台长边方向选用B22@180,钢筋数n=3800/180+1=23,实际配筋

MyAs23380.1

8742.3mm2,满足要求。沿平行x轴方向均匀布置。

5.承台构造设计

混凝土桩顶伸入承台长度50mm,两承台之间设置连系梁,梁顶面标高-0.7m,与承台顶齐平。

梁高

h0.5m h(1/10~1/15)4.5或h(1/10~1/15)6.0即h0.3~0.6m取取梁宽b=0.3m 按构造要求:

N11Fmax4681.4468.14kN 1010按轴心受拉计算时:

ASN/fy468.14103/3001560.5mm2 采用8B16 As1608.8mm2 钢筋锚入承台长度计算:

lafyftd0.1430016469.9mm,取la470mm 1.43箍筋采用A8@200。承台底做100mm厚C10素混凝土垫层,垫层挑出承台边缘100mm 桩身结构设计

沉管灌注桩和预制桩尖选用C30混凝土,钢筋选用HRB335级。1.单桩配筋

桩身按构造要求配筋,桩身配10B12纵向钢筋,As1131mm2,则桩身的配筋率为

gAs11310.4% A1/43.146002满足0.2%~0.65%之间的要求。

验算配筋:

桩身截面尺寸 直径600mm, 混凝土C30 经比较桩©为最不利桩,有

MMy0.2kNm;HVy126.5kNm

根据灌注桩周土层的类别,土的地基抗力的比例系数m以主要影响深度

hm2(d1)米范围内的m平均值作为m的计算值。

hm2(d1)2(0.61)3.2m,在3.2m深度范围内存在三种不同土层,故土的地基抗力比例系数为:

2m[m1h12m2(2h1h2)h2m3(2h12h2h3)h3]/hm[4.50.3210.0(20.32)4.5(20.3220.9)0.9]/3.224.75MN/m4圆形桩桩身的计算宽度为

b00.9(1.5d0.5)0.9(1.50.60.5)1.26 m对C30混凝土,有

Ec3.0104N/mm2 对HRB335级钢筋,有

Es2.0105N/mm2 扣除保护层厚的桩直径为:

d00.6-0.040.56m 桩身换算截面受拉边缘的截面模量为

W0d

53.140.62.01023[0.622(-1)0.4%0.56]0.0220m323.0104[d22(E-1)gd02]

I0W0d/20.02200.6/26.610-3m4

EI0.85EcI00.853.01046.610-316.83MNm2 则

桩的变形系数

桩顶荷载 M0mb054.751.260.513 EI168.3M0.2/50.04kNm nV

H0126.5/525.3kN

n故

CIM00.5130.04/25.30.000392 H023.437694.59637(0.033810.000811)18.258

0.033810.144791.41.3(0.033-80.10008111.)361

h1.3

0.033810.14479查表得 C23.43769故桩身最大弯矩深度为:Zmax桩身最大弯矩:

h1.3612.65m 0.513

MmaxCM018.2580.040.73kNm

按上述配构造配筋的10B12纵向钢筋,As1131mm2 能承担的弯矩M0.9fyh0As 0.93005601131171kNm0.73kNm。

故上述配筋满足要求。

1.桩身轴向承载力验算

根据《建筑桩基技术规范》(JGJ 94-2008)第5.8.2条规定,桩顶轴向压力应符合下列规定:

NmaxcfcAps

FG(MxVxh)ymax(MyVyh)xmaxNmaxnyi2xi24681.41.2490.96(72.8-0.21.0)1.3(0.213.831.0)1.3541.3241.32

1049.7kN

计算桩身轴心抗压强度时,一般不考虑压屈影响,故取稳定系数1;对于灌注桩,基桩施工工艺系数c0.7;C30混凝土 fc14.3N/mm2,则

cfcA1.00.714.31061/43.140.622828.8kNNmax(1094.7kN)

故桩身轴向承载力满足要求。

2.桩身水平承载力验算

由设计资料得桩低传至承台顶面的水平荷载标准值为:

222Hyk(-0.15)102.42102.4kN

HKHxk每根基桩承受水平荷载为

HikHk102.4/520.48kN n对于配筋率小于0.65%的灌注桩,单桩水平承载力特征值按下式计算:

RHa0.75mft0m(1.2522g)(1NNk)mftAn桩身为圆形截面,故m2,N0.5。

0.513

Ec3.0104N/mm2

Es2.0105N/mm2g0.4% 桩顶最大弯矩系数m取值:由于桩的入土深度h=13m,桩与承台为固接,h0.513136.6694,取h4,查表得m0.926。

And24[1(E-1)g]40.62[1(202 m-1)0.4%]0.2893NK取在荷载效应标准组合下桩顶的最小竖向力(用该值计算所得单桩水平承载力特征值最小),有前面计算得Nk761.7kN,则

单桩水平承载力特征值:

RHa0.75mft0m(1.2522g)(1NNk)mftAn0.750.51321.431060.02200.9260.5761.7103(1.25220.004)(1)51097N51.1kNHik(20.48kN)621.43100.289故桩身水平承载力满足要求。3.配筋长度计算

配筋长度应不小于桩长的2/3(即2/3×13=8.67m),同时不宜小于4.0/4.0/0.5137.797m,则配筋长度取9.0m。由于9.0m没有穿过淤泥质土层,故钢筋应通长布置。钢筋锚入承台35倍主筋直径,即3512420mm。4.箍筋配置

箍筋采用A8@200mm螺旋式箍筋,且在桩顶以下5d50.63m范围内箍筋加密,间距为100mm。由于钢筋笼长度超过4m,每隔2m设一道A8@2000焊接加劲箍筋。

二、1.2设计荷载(○D○3桩)

柱底荷载效应基本组合值如下。

F3635.3kN,Mx72.7kNm,Vx-10.9kN,My11.7kNm,Vy138.2kN

柱底荷载效应标准组合值如下。

Fk2692.8kN,Mxk53.85kNm,Vxk-8.07kN,Myk8.67kNm,Vyk102.4kN1.3底层条件及其参数

底层条件及其参数详见桩基任务书。1.4灌注桩基设计 根据工程场地的《岩土工程勘察报告》,建筑物基础设计方案采用混凝土沉管灌注桩,结合各土层物理力学性质和具体工程地质条件,具体设计方案如下:室外地坪标高为-0.30m,自然地面标高同室外地坪标高。因该建筑桩基属丙级建筑桩基,拟采用直径为500mm的圆形混凝土沉管灌注桩。选择④号的粉土层作为桩基础的持力层。桩端伸入持力层1.95m(3d~10d=1800~6000mm),设计桩长为13.0m,预制桩尖长0.5m。初步设计承台高0.9m,承台地面埋置深度-1.50m,桩顶伸入承台50mm。1.4.1单桩承载力计算

根据以上设计,桩顶标高为-1.45m,桩底标高为-14.45m,桩长为13m。1.单桩竖向极限承载力特征值计算

114003.140.53.140.50.5112268.5111.9533612.8kN42RaqpaApupqsiali2.桩数确定

根据上部荷载初步估计桩数为

n则设计桩数为5根。1.4.2桩基的验算

根据《建筑桩基技术规范》(JGJ94-2008),当按单桩承载力特征值进行计算时,荷载应取其效应的标准组合值。由于桩基所处场地的抗震设防烈度为7度,且场地内无可液化砂土、粉土问题,因此可不进行地震效应的竖向承载力验算。

根据桩数设计矩形承台,边长为3.2m3.2m,边桩的中心距为1.5m,桩心至承台边缘为500mm(见图1)。

承台及其上填土的总重为

Gk3.23.21.520307.2kN

计算时取荷载的标准组合,则

QkFkGk2692.8307.2600kNRa612.8kN n5Fk269.824.4 Ra61.28Qkmax53.85-8.070.91.18.67102.40.91.1MxymaxMyxmaxQ612.8k2222Qkminyx41.141.1ii646.3kN1.2Ra1.2612.8735.36kN519.3kN0满足设计要求,可知此初步设计是合理的。

1.4.3承台设计

根据以上桩基设计及构造要求,承台尺寸为3.2m3.2m,初步设计承台厚0.9m(见图2),承台混凝土选用C30,ft1.43N/mm2,fc14.3N/mm2。承台钢筋选用HRB335级,fy300N/mm2。1.承台内力计算——采用荷载效应基本组合值

承台内力计算采用荷载效应基本组合值,基桩净反力设计值为

NmaxFMxXiMyYi3635.372.7-10.90.91.111.7138.20.91.1772.28kNNminnxi2yi2541.1241.12681.84kN

NF3635.3727.06kN。n5 2.承台厚度及受冲切承载力验算

为防止承台产生冲切破坏,承台应具有一定的厚度,初步设计承台厚0.9m,承台保护层厚40mm,则ho90040860mm。分别对柱边冲切和角桩冲切进行计算,以验算承台厚度的合理性。

由于桩基为圆形桩,计算时应将截面换算为方桩,则换算方桩截面边宽为

bp0.8d0.8500400mm

图2所示承台计算简图中的基桩是换算后边长为400mm的方桩。(1).柱对承台冲切

承台受桩冲切的承载力应满足下式:

Fl2oxbcaoyoyhcaoxhpftho, 由于FlFNi3635.3727.062908.24kN,则冲跨比为

oxaox7000.814(在0.25~1.0之间)ho860

oy冲切系数为

oxaoyho7000.8141

8600.840.840.828

ox0.20.8140.2

oy0.840.840.82 8

oy0.20.8140.2h800,hp1.0;h2000,hp0.9 内插可得

hp1.0-1.0-0.9(90-0800)0.99 2

200-08002oxbcaoyoyhcaoxhpftho4444.56kNFl2908.24kN

20.8280.40.700.8280.40.700.99214300.86 故厚度为0.9m的承台能够满足柱对承台的冲切要求。

(2).角桩冲切验算

承台受角桩冲切的承载力应满足下式:

a1ya1xcc

Nl1x221y12hpftho

'由于NiNmax772.28kN,从角桩内边缘至承台外边缘距离为

c1c20.70m,a1xa1y0.70m,1x1ya1x0.700.25~1.0之间),0.81(在4ho0.860.560.56,0.5521x0.20.8140.2

1x1ya1ya1xcchpftho1x21y1220.99214300.86

(0.700.70/2)0.552(0.700.70/2)

0.5521414.2kNNmax772.28kN故厚度为0.9m的承台能满足角桩对承台的冲切要求。

3.承台受剪承载力计算 剪跨比与以上冲垮比相同。

承台剪切破坏发生在柱边与桩便连线所形成的斜截面处,对于I-I截面,oxoy剪切系数为

700(介于0.3~3之间)0.814860

1.751.01.75 0.9650.8141.0受剪切承载力高度影响系数为

hs(800/ho)I-I截面剪力为

V2Nmax2772.281544.56kN 则

0.25(800/860)0.250.982

hsftbho0.9820.9653.214300.863729.3kN2Nmax2772.281544.56kN故承台能满足抗剪切的要求。

4.承台受弯承载力计算

'对于I-I截面,取基桩净反力最大值Nmax772.28kN进行计算,则

MxNiyi2772.28(1.1-0.2)1390.1kNm,Mx1390.1106

As5986.7mm2

0.9fyho0.9300860因此,承台长边方向选用B20@170,钢筋数n=3200/170+1=20,实际配筋As20314.26284mm2,满足要求。沿平行y轴方向均匀布置。

'对于Ⅱ—Ⅱ截面,取基桩净反力最大值Nmax772.28kN进行计算,则

MyNixi2772.28(1.1-0.2)1390.1kNm,1390.1106

As5986.7mm2

0.9fyho0.9300860因此,承台长边方向选用B20@170,钢筋数n=3200/170+1=20,实际配筋

mm2,满足要求。沿平行x轴方向均匀布置。As20314.26284My5.承台构造设计

混凝土桩顶伸入承台长度50mm,两承台之间设置连系梁,梁顶面标高-0.6m,与承台顶齐平。

梁高 h(1/10~1/15)4.5或h(1/10~1/15)6.0即h0.3~0.6m取h0.5m

取梁宽b=0.3m 按构造要求:

N11Fmax4681.4468.14kN 1010按轴心受拉计算时:

ASN/fy468.14103/3001560.5mm2

采用8B16 As1608.8mm2 钢筋锚入承台长度计算:

lafyftd0.1430016469.9mm,取la470mm 1.43箍筋采用A8@200。承台底做100mm厚C10素混凝土垫层,垫层挑出承台边缘100mm 桩身结构设计

沉管灌注桩和预制桩尖选用C30混凝土,钢筋选用HRB335级。1.单桩配筋

桩身按构造要求配筋,桩身配8B12纵向钢筋,As904mm2,则桩身的配筋率为

gAs9040.46% 2A1/43.14500满足0.2%~0.65%之间的要求。

验算配筋:

桩身截面尺寸 直径500mm, 混凝土C30 下面对桩身配筋率进行验算。

经比较,选取最不利组合,荷载M11.7kNm,H138.2kN

根据灌注桩周土层的类别,土的地基抗力的比例系数m以主要影响深度

hm2(d1)米范围内的m平均值作为m的计算值。

hm2(d1)2(0.51)3.0m,在3.0m深度范围内存在三种不同土层,故土的地基抗力比例系数为:

2m[m1h12m2(2h1h2)h2m3(2h12h2h3)h3]/hm[4.50.5210.0(20.52)4.5(20.5220.5)0.5]/3.024.83MN/m4圆形桩桩身的计算宽度为

b00.9(1. m5d0.5)0.9(1.50.50.5)1.125对C30混凝土,有

Ec3.0104N/mm2 对HRB335级钢筋,有

Es2.0105N/mm2 扣除保护层厚的桩直径为:

d00.5-0.040.4m6 桩身换算截面受拉边缘的截面模量为

W0d

53.140.52.010[0.522(-1)0.46%0.462]0.0128m34323.010[d22(E-1)gd02]

I0W0d/20.01280.5/23.210-3m4

EI0.85EcI00.853.01043.210-381.6MNm2 则

桩的变形系数

5

桩顶荷载 M0mb054.831.1250.58 2EI81.6M11.7/52.34kNm nV

H0138.2/527.64kN

n故

CIM00.5822.34/27.640.049 3H023.43769-3.87572(0.0493-0.03381)22.007

0.24563-0.033811.31.2(0.04-90.3033811).293

h1.3-

0.245-603.03381查表得 C23.43769故桩身最大弯矩深度为:Zmax桩身最大弯矩:

h1.2932.22m 0.582

MmaxCM022.0072.3451.5kNm

按上述配构造配筋的10B12纵向钢筋,As1131mm2 能承担的弯矩M0.9fyh0As

0.93005601131171kNm51.5kNm。

故上述配筋满足要求。

2.桩身轴向承载力验算

根据《建筑桩基技术规范》(JGJ 94-2008)第5.8.2条规定,桩顶轴向压力应符合下列规定:

NmaxcfcAps

Nmax

FG(MxVxh)ymax(MyVyh)xmax2nyixi2 3635.31.2307.2(72.7-10.90.9)1.1(11.7138.20.9)1.1541.1241.12

846.0kN

计算桩身轴心抗压强度时,一般不考虑压屈影响,故取稳定系数1;对于灌注桩,基桩施工工艺系数c0.7;C30混凝土 fc14.3N/mm2,则

cfcA1.00.714.31061/43.140.521964.5kNNmax(846.0kN)

故桩身轴向承载力满足要求。

3.桩身水平承载力验算

由设计资料得桩低传至承台顶面的水平荷载标准值为:

222Hyk(-8.07)102.42102.7kN

HKHxk每根基桩承受水平荷载为

HikHk102.7/520.54kN n对于配筋率小于0.65%的灌注桩,单桩水平承载力特征值按下式计算:

RHa0.75mft0m(1.2522g)(1NNk)mftAn桩身为圆形截面,故m2,N0.5。

0.582

Ec3.0104N/mm2

Es2.0105N/mm2g0.46% 桩顶最大弯矩系数m取值:由于桩的入土深度h=13m,桩与承台为固接,h0.582137.5664,取h4,查表得m0.926。

And24[1(E-1)g]40.52[1(202-1)0.46%0].201 m3NK取在荷载效应标准组合下桩顶的最小竖向力(用该值计算所得单桩水平承载力特征值最小),有前面计算得Nk681.84kN,则

单桩水平承载力特征值:

RHa0.75mft0m(1.2522g)(1NNk)mftAn0.750.58221.431060.01280.9260.5681.84103(1.25220.0046)(1)37145N37.145kNHik(20.54kN)621.43100.201故桩身水平承载力满足要求。3.配筋长度计算

配筋长度应不小于桩长的2/3(即2/3×13=8.67m),同时不宜小于4.0/4.0/0.5137.797m,则配筋长度取9.0m。由于9.0m没有穿过淤泥质土层,故钢筋应通长布置。钢筋锚入承台35倍主筋直径,即3512420mm。4.箍筋配置

箍筋采用A8@200mm螺旋式箍筋,且在桩顶以下5d50.63m范围内箍筋加密,间距为100mm。由于钢筋笼长度超过4m,每隔2m设一道A8@2000焊接加劲箍筋。1.4.5 估算○A○7与○B○7柱下桩数

1.桩数估算

设计○A○7与○B○7柱下桩基础的方法与○C○3柱下相同。A○7柱下荷载标准值为 ○Fk2733.4kN,Mxk-44.8kN,Vxk6.07kN,Myk-6.52kN,Vyk-92.67kN 桩径600mm,桩尖进入持力层1.95m 基桩竖向极限力特征值R801.35kN 初步估计桩数为

nFk2733.43.4 R801.35则○A○7柱下设计桩数为4根。B○7柱下荷载标准值为 ○Fk3382.3kN,Mxk-45.78kN,Vxk0.15kN,Myk-0.15kN,Vyk-93.7kN 桩径500mm,桩尖进入持力层1.95m 基桩竖向极限力特征值R612.98kN 初步估计桩数为

nFk3382.35.5 R612.98则○B○7柱下设计桩数为6根。2.承台平面尺寸确定

根据估算的桩数和承台构造要求,设计○A○7柱下承台平面尺寸为3.0m3.0m,桩最小中心距为1.8m,桩心与承台边缘距离0.6m;○B○7柱下承台平面尺寸为2.5m4.0m,桩最小中心距为1.5m,桩心与承台边缘距离0.5m。

相关内容

热门阅读

最新更新

随机推荐